Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katalin Solymosi is active.

Publication


Featured researches published by Katalin Solymosi.


Photosynthesis Research | 2010

Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms.

Katalin Solymosi; Benoı̂t Schoefs

Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.


Annals of Botany | 2013

The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta

Jean Marc Brillouet; Charles Romieu; Benoît Schoefs; Katalin Solymosi; Véronique Cheynier; Hélène Fulcrand; Jean Luc Verdeil; Geneviève Conéjéro

BACKGROUND AND AIMS Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta. METHODS Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine-glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions. KEY RESULTS AND CONCLUSIONS The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described.


Plant Physiology | 2010

Role of Thylakoid ATP/ADP Carrier in Photoinhibition and Photoprotection of Photosystem II in Arabidopsis

Lan Yin; Björn Lundin; Martine Bertrand; Markus Nurmi; Katalin Solymosi; Saijaliisa Kangasjärvi; Eva-Mari Aro; Benoît Schoefs

The chloroplast thylakoid ATP/ADP carrier (TAAC) belongs to the mitochondrial carrier superfamily and supplies the thylakoid lumen with stromal ATP in exchange for ADP. Here, we investigate the physiological consequences of TAAC depletion in Arabidopsis (Arabidopsis thaliana). We show that the deficiency of TAAC in two T-DNA insertion lines does not modify the chloroplast ultrastructure, the relative amounts of photosynthetic proteins, the pigment composition, and the photosynthetic activity. Under growth light conditions, the mutants initially displayed similar shoot weight, but lower when reaching full development, and were less tolerant to high light conditions in comparison with the wild type. These observations prompted us to study in more detail the effects of TAAC depletion on photoinhibition and photoprotection of the photosystem II (PSII) complex. The steady-state phosphorylation levels of PSII proteins were not affected, but the degradation of the reaction center II D1 protein was blocked, and decreased amounts of CP43-less PSII monomers were detected in the mutants. Besides this, the mutant leaves displayed a transiently higher nonphotochemical quenching of chlorophyll fluorescence than the wild-type leaves, especially at low light. This may be attributed to the accumulation in the absence of TAAC of a higher electrochemical H+ gradient in the first minutes of illumination, which more efficiently activates photoprotective xanthophyll cycle-dependent and independent mechanisms. Based on these results, we propose that TAAC plays a critical role in the disassembly steps during PSII repair and in addition may balance the trans-thylakoid electrochemical H+ gradient storage.


Nature Communications | 2016

A voltage-dependent chloride channel fine-tunes photosynthesis in plants

Andrei Herdean; Enrico Teardo; Anders K. Nilsson; Bernard E. Pfeil; Oskar N. Johansson; Renáta Ünnep; Gergely Nagy; Ottó Zsiros; Somnath Dana; Katalin Solymosi; Győző Garab; Ildikò Szabò; Cornelia Spetea; Björn Lundin

In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl−) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl− channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments.


Agronomy for Sustainable Development | 2012

Soil metals, chloroplasts, and secure crop production: a review

Katalin Solymosi; Martine Bertrand

An increasing number of soils of poor quality with unbalanced metal concentrations are used worldwide for crop cultivation. Even though plants are able to develop strategies to cope with metal stress, either metal deficiency or excess, this unbalance affects the whole plant. Chloroplasts are key organelles for organic matter synthesis and biomass production. Under metal stress, chloroplasts suffer severe alterations of their ultrastructure, associated with profound molecular and metabolic damages. These alterations are accompanied by unbalanced metal distribution in plants, in particular in edible crop organs. Toxic metals get either accumulated or there is a deficiency of nutrients, resulting in a weak nutritional value. Nonetheless, there is more and more knowledge on the functioning and regulation of metal transporters in plants. Such knowledge will allow growing crops with well-balanced metal concentrations in edible parts even on metal unbalanced soils. This review shows that almost all vital functions of chloroplasts, such as photosynthesis, CO2 fixation, nitrogen and sulfur assimilation, and protein and nucleic acid metabolism, require metals. Therefore, the uptake of essential metals is necessary for the proper functioning of chloroplasts and, in turn, for crop productivity. We describe nutrient uptake mechanisms of plants and processes that influence essential and non-essential metal concentrations in different plant organs. We present an overview of metal transporters in chloroplasts. Several questions still need to be elucidated about the uptake and the trafficking of essential and non-essential metals into and within chloroplasts. Similarly to transporters present in other cellular compartments, the carriers are often not metal-specific. Therefore, essential and non-essential metals may compete for carriers. As a result, unbalanced soil metal concentrations can be reflected in the plants and in the chloroplasts. Metal deficiency or excess causes reduced growth and decreased productivity of crops. It can lead to human malnutrition. Several complex physiological processes can be responsible for the reduced biomass observed in plants with unbalanced metal concentration. In this review, we have focused on the structural and functional alterations of chloroplasts under metal deficiency or excess. Interestingly, besides specific differences, our data indicate several similarities in the response of chloroplasts to metal deficiency or excess. Indeed, oxidative stress and several ultrastructural alterations, e.g., increase in the number and size of plastoglobuli, disorganized grana and disturbed thylakoids, and swelling of the intrathylakoidal space, are observed in both cases. This indicates that changes in chloroplast ion homeostasis rather than the specific effect of a metal are responsible for decreased plant productivity. Therefore, sustainable agriculture has to take into consideration solutions that enable undisturbed metal and ion homeostasis in chloroplasts of crop plants grown even in soils with unbalanced metal concentrations.


Phycologia | 2011

Chloroparva pannonica gen. et sp. nov. (Trebouxiophyceae, Chlorophyta) - a new picoplanktonic green alga from a turbid, shallow soda pan

Boglárka Somogyi; Tamás Felföldi; Katalin Solymosi; Judit Makk; Zalán G. Homonnay; Györgyi Horváth; Erika Turcsi; Béla Böddi; Károly Márialigeti; Lajos Vörös

Somogyi B., Felföldi T., Solymosi K., Makk J., Homonnay Z.G., Horváth G., Turcsi E., Böddi B., Márialigeti K. and Vörös L. 2011. Chloroparva pannonica gen. et sp. nov. (Trebouxiophyceae, Chlorophyta) – a new picoplanktonic green alga from a turbid, shallow soda pan. Phycologia 50: 1–10. DOI: 10.2216/10-08.1 We describe Chloroparva pannonica Somogyi, Felföldi & Vörös gen. et sp. nov., a new trebouxiophycean picoplanktonic alga isolated from a turbid, shallow soda pan in Hungary. The cells are spherical to oval, less than 2 µm in diameter, with simple ultrastructure typical to small green algae. Cells divide by autosporulation, forming two daughter cells per autosporangium. Cell wall structure consists of an outer trilaminar layer, an inner microfibrillar layer and an electron-transparent layer covering the plasma membrane. The trilaminar layer of the mother cell wall often persists around the autospores. Typical chlorophyte pigments have been found, including chlorophyll a and b and lutein as the dominant carotenoid. The main fatty acid was oleic acid. The phylogenetic position of the new chlorophyte confirms the proposal of a new genus within the Trebouxiophyceae. Based on its 18S rRNA gene sequence, this isolate is distantly related to Nannochloris eucaryotum UTEX 2502, Chlorella minutissima C-1.1.9 and C. minutissima SAG 1.80 (≤ 97.6% 18S rRNA gene pairwise similarities).


PLOS ONE | 2012

Photosystem II function and dynamics in three widely used Arabidopsis thaliana accessions.

Lan Yin; Rikard Fristedt; Andrei Herdean; Katalin Solymosi; Martine Bertrand; Mats X. Andersson; Fikret Mamedov; Alexander V. Vener; Benoı̂t Schoefs; Cornelia Spetea

Columbia-0 (Col-0), Wassilewskija-4 (Ws-4), and Landsberg erecta-0 (Ler-0) are used as background lines for many public Arabidopsis mutant collections, and for investigation in laboratory conditions of plant processes, including photosynthesis and response to high-intensity light (HL). The photosystem II (PSII) complex is sensitive to HL and requires repair to sustain its function. PSII repair is a multistep process controlled by numerous factors, including protein phosphorylation and thylakoid membrane stacking. Here we have characterized the function and dynamics of PSII complex under growth-light and HL conditions. Ws-4 displayed 30% more thylakoid lipids per chlorophyll and 40% less chlorophyll per carotenoid than Col-0 and Ler-0. There were no large differences in thylakoid stacking, photoprotection and relative levels of photosynthetic complexes among the three accessions. An increased efficiency of PSII closure was found in Ws-4 following illumination with saturation flashes or continuous light. Phosphorylation of the PSII D1/D2 proteins was reduced by 50% in Ws-4 as compared to Col-0 and Ler-0. An increase in abundance of the responsible STN8 kinase in response to HL treatment was found in all three accessions, but Ws-4 displayed 50% lower levels than Col-0 and Ler-0. Despite this, the HL treatment caused in Ws-4 the lagest extent of PSII inactivation, disassembly, D1 protein degradation, and the largest decrease in the size of stacked thylakoids. The dilution of chlorophyll-protein complexes with additional lipids and carotenoids in Ws-4 may represent a mechanism to facilitate lateral protein traffic in the membrane, thus compensating for the lack of a full complement of STN8 kinase. Nevertheless, additional PSII damage occurs in Ws-4, which exceeds the D1 protein synthesis capacity, thus leading to enhanced photoinhibition. Our findings are valuable for selection of appropriate background line for PSII characterization in Arabidopsis mutants, and also provide the first insights into natural variation of PSII protein phosphorylation.


Frontiers in Plant Science | 2016

The Arabidopsis Thylakoid Chloride Channel AtCLCe Functions in Chloride Homeostasis and Regulation of Photosynthetic Electron Transport

Andrei Herdean; Hugues Nziengui; Ottó Zsiros; Katalin Solymosi; Győző Garab; Björn Lundin; Cornelia Spetea

Chloride ions can be translocated across cell membranes through Cl− channels or Cl−/H+ exchangers. The thylakoid-located member of the Cl− channel CLC family in Arabidopsis thaliana (AtCLCe) was hypothesized to play a role in photosynthetic regulation based on the initial photosynthetic characterization of clce mutant lines. The reduced nitrate content of Arabidopsis clce mutants suggested a role in regulation of plant nitrate homeostasis. In this study, we aimed to further investigate the role of AtCLCe in the regulation of ion homeostasis and photosynthetic processes in the thylakoid membrane. We report that the size and composition of proton motive force were mildly altered in two independent Arabidopsis clce mutant lines. Most pronounced effects in the clce mutants were observed on the photosynthetic electron transport of dark-adapted plants, based on the altered shape and associated parameters of the polyphasic OJIP kinetics of chlorophyll a fluorescence induction. Other alterations were found in the kinetics of state transition and in the macro-organization of photosystem II supercomplexes, as indicated by circular dichroism measurements. Pre-treatment with KCl but not with KNO3 restored the wild-type photosynthetic phenotype. Analyses by transmission electron microscopy revealed a bow-like arrangement of the thylakoid network and a large thylakoid-free stromal region in chloroplast sections from the dark-adapted clce plants. Based on these data, we propose that AtCLCe functions in Cl− homeostasis after transition from light to dark, which affects chloroplast ultrastructure and regulation of photosynthetic electron transport.


Biochimica et Biophysica Acta | 2014

The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering ☆ ☆☆

Renáta Ünnep; Ottó Zsiros; Katalin Solymosi; László Kovács; Petar H. Lambrev; Tünde Tóth; R. Schweins; Dorthe Posselt; Noemi Szekely; L. Rosta; Gergely Nagy; Győző Garab

We studied the periodicity of the multilamellar membrane system of granal chloroplasts in different isolated plant thylakoid membranes, using different suspension media, as well as on different detached leaves and isolated protoplasts-using small-angle neutron scattering. Freshly isolated thylakoid membranes suspended in isotonic or hypertonic media, containing sorbitol supplemented with cations, displayed Bragg peaks typically between 0.019 and 0.023Å(-1), corresponding to spatially and statistically averaged repeat distance values of about 275-330 Å⁻¹. Similar data obtained earlier led us in previous work to propose an origin from the periodicity of stroma thylakoid membranes. However, detached leaves, of eleven different species, infiltrated with or soaked in D2O in dim laboratory light or transpired with D2O prior to measurements, exhibited considerably smaller repeat distances, typically between 210 and 230 Å⁻¹, ruling out a stromal membrane origin. Similar values were obtained on isolated tobacco and spinach protoplasts. When NaCl was used as osmoticum, the Bragg peaks of isolated thylakoid membranes almost coincided with those in the same batch of leaves and the repeat distances were very close to the electron microscopically determined values in the grana. Although neutron scattering and electron microscopy yield somewhat different values, which is not fully understood, we can conclude that small-angle neutron scattering is a suitable technique to study the periodic organization of granal thylakoid membranes in intact leaves under physiological conditions and with a time resolution of minutes or shorter. We also show here, for the first time on leaves, that the periodicity of thylakoid membranes in situ responds dynamically to moderately strong illumination. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Current Chemical Biology | 2013

Plastid structure, diversification and interconversions II. land plants

Katalin Solymosi; Áron Keresztes

In the course of endosymbiogenesis, the photosynthetic prokaryotes engulfed and retained by different het- erotrophic organisms have partially lost their independence during evolution and became semi-autonomous organelles, the chloroplasts. The chloroplast represents the most ancestral form of plastids that has parallelly evolved in several algal groups (reviewed in (1)) and in land plants. After briefly discussing plastid morphology, we review the most important ul- trastructural features of the plastids of land plants. Then we discuss how plastids got gradually specialized in parallel with the increasing developmental and/or organizational complexity of the plant body. The plastids of non-photosynthetic tis- sues and cells do not need to produce and maintain a photosynthetic apparatus, but have adjusted their metabolism to the major function of the host cell (and tissue). This way, different plastid forms specialized for other functions such as stor- age (e.g. starch storing leucoplasts called amyloplast) or carotenoid synthesis (chromoplasts) have developed. However, the classical ultrastructural characterization and classification of plastids is often problematic. First of all, the term plastid refers to the extremely high plasticity of this organelle, and its capacity to be readily transformed from one type into an- other one upon different environmental or developmental stimuli. Therefore, transitional (or if persistent, intermediate) plastids with morphological features characteristic for two different plastid types can be often observed. Sometimes plas- tids with similar ultrastructure can have different specific functions and basically different metabolism, and should be therefore treated separately. After having recalled the different plastid types of land plants we present a dynamic model about their interconversions.

Collaboration


Dive into the Katalin Solymosi's collaboration.

Top Co-Authors

Avatar

Béla Böddi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Károly Bóka

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annamária Kósa

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Beáta Vitányi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Győző Garab

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge