Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarína Kozics is active.

Publication


Featured researches published by Katarína Kozics.


Journal of Agricultural and Food Chemistry | 2014

Assessment of Antioxidative, Chelating, and DNA-Protective Effects of Selected Essential Oil Components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of Plants and Intact Rosmarinus officinalis Oil

Eva Horváthová; Jana Navarová; Eliska Galova; Andrea Sevcovicova; Lenka Chodakova; Zuzana Snahnicanova; Martina Melušová; Katarína Kozics; Darina Slamenova

Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.


Food Chemistry | 2013

Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells

Katarína Kozics; Veronika Klusová; Annamária Srančíková; Pavol Mučaji; Darina Slameňová; Ľubica Hunáková; Eva Horváthová

Salvia officinalis (SO) and Thymus vulgaris (TV) are medicinal plants well known for their curative powers. However, the molecular mechanisms responsible for these abilities of sage and thyme have not been fully understood yet. In this study we investigated the composition and the quantitative estimation of plant extracts, the protective effects of plant extracts against hydrogen peroxide- and 2,3-dimethoxy-1,4-naphthoquinone-induced DNA damage, and levels of enzymatic and non-enzymatic antioxidants (superoxide dismutase, glutathione peroxidase, glutathione) in human HepG2 cells. To measure antioxidative activity of plant extracts we used three assays: 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The results showed that the oxidant-induced DNA lesions were significantly reduced in cells pre-treated with the plant extracts studied. The observed DNA-protective activity could be explained by both elevation of GPx activity in cells pre-treated with SO and TV and antioxidant activity of SO and TV.


Toxicology Letters | 2014

The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticles

Monika Mesárošová; Katarína Kozics; Andrea Bábelová; Eva Regendová; Michal Pastorek; Dominika Vnuková; Barbora Buliaková; Filip Rázga; Alena Gábelová

The generation of reactive oxygen species (ROS) has been proposed as the underlying mechanism involved in the genotoxicity of iron oxide nanoparticles. The data published to date are, however, inconsistent, and the mechanism underlying ROS formation has not been completely elucidated. Here, we investigated the capacity of several surface-modified magnetite nanoparticles (MNPs) to generate ROS in A549 human lung adenocarcinoma epithelial cells and HEL 12469 human embryonic lung fibroblasts. All MNPs, regardless of the coating, induced significant levels of DNA breakage in A549 cells but not in HEL 12469 cells. Under the same treatment conditions, variable low levels of intracellular ROS were detected in both A549 and HEL 12469 cells, but compared with control treatment, none of the coated MNPs produced any significant increase in oxidative damage to DNA in either of these cell lines. Indeed, no significant changes in the total antioxidant capacity and intracellular glutathione levels were observed in MNPs-treated human lung cell lines regardless of surface coating. In line with these results, none of the surface-modified MNPs increased significantly the GPx activity in A549 cells and the SOD activity in HEL 12469 cells. The GPx activity was significantly increased only in SO-Fe3O4-treated HEL 12469 cells. The SOD activity was significantly increased in SO-PEG-PLGA-Fe3O4-treated A549 cells but significantly decreased in SO-Fe3O4-treated A549 cells. Our data indicate that oxidative stress plays, at most, only a marginal role in the genotoxicity of surface-modified MNPs considered in this study in human lung cells.


Mutagenesis | 2012

Borneol administration protects primary rat hepatocytes against exogenous oxidative DNA damage

Eva Horváthová; Katarína Kozics; Annamária Srančíková; Ľubica Hunáková; Eliska Galova; Andrea Sevcovicova; Darina Slameňová

Experimental evidences suggest that most essential oils possess a wide range of biological and pharmacological activities that may protect tissues against oxidative damage. In this study, we investigated DNA-protective effect of borneol, a component of many essential oils, against oxidative DNA damage induced in primary cultures of rat hepatocytes. Borneol was added to drinking water of Sprague-Dawley rats and DNA resistance against oxidative agents was compared in hepatocytes originated from control and borneol-treated rats. Oxidative stress induced by visible light-excited methylene blue (MB/VL) or 2,3-dimethoxy-1,4-naphthoquionone (DMNQ) resulted in increased levels of DNA lesions measured by the modified single cell gel electrophoresis. Borneol (17 or 34 mg/kg body weight) added to drinking water of rats for 7 days reduced the level of oxidative DNA lesions induced in their hepatocytes by MB/VL or DMNQ. To explain the increased resistance of DNA towards oxidative stress, we measured the base-excision repair (BER) capacity in liver cell extracts of control and borneol-supplemented rats on DNA substrate of HepG2 cells containing oxidative damage. Our results showed that administration of borneol in drinking water had no effect on incision activity of hepatocytes isolated from supplemented rats. The spectrophotometric assessment of enzymatic antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the flow cytometric assessment of total intracellular glutathione (iGSH) in primary hepatocytes of borneol-supplemented rats showed no changes in SOD and GPx activities but higher iGSH content particularly in hepatocytes of higher borneol dose (34 mg/kg) supplemented rats in comparison to control animals. Despite the fact that borneol had no effect either on BER of oxidative DNA damage or on the levels of antioxidant enzymes and manifested no reducing power and radicals scavenging activity, it increased significantly the level of non-enzymatic antioxidant iGSH which could reduce the oxidative DNA lesions induced by MB/VL or DMNQ.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2013

Comparison of biological processes induced in HepG2 cells by tert-butyl hydroperoxide (t-BHP) and hydroperoxide (H2O2): The influence of carvacrol.

Darina Slamenova; Katarína Kozics; Lubica Hunakova; Martina Melušová; Jana Navarová; Eva Horváthová

This paper presents comparisons of biological impacts of the oxidants H2O2 and t-BHP on human liver cells, and shows modulation of these effects by the phenolic compound carvacrol. To understand better how these oxidants exert their effect on DNA and on the activity of the enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), we measured intracellular antioxidant glutathione (iGSH) and intracellular reactive oxidative species (iROS). DNA lesions corresponded to single-strand DNA breaks, alkali-labile lesions and formamido-pyrimidine-DNA-glycosylase (FPG)-sensitive sites. Pre-treatment of cells with carvacrol substantially decreased the number of H2O2-induced DNA lesions, but the number of t-BHP-induced DNA lesions was not reduced. Activities of both SOD and GPx were stimulated significantly by carvacrol and were reduced by the combined effect of carvacrol and oxidants. H2O2 and t-BHP alone influenced the level of antioxidant enzymes differently. While H2O2 did not markedly change the activity of SOD or GPx, lower concentrations of t-BHP stimulated activity of SOD and mainly GPx. The level of iROS was increased by both oxidants and decreased by carvacrol applied either alone or with oxidants. The level of iGSH was not influenced in any of the treatments tested. Our results show that although both oxidants induced oxidative stress and damaged cellular DNA, their influences on other molecular processes were different. The protective effect of carvacrol against DNA-damaging effects of H2O2 was unambiguous, but reduction by carvacrol of the DNA-damaging effect of t-BHP was not observed. These results suggest that the phenolic compound carvacrol contributes to the defence mechanisms of the human organism, but these beneficial effects are dependent on the origin and source of the actual oxidative stress.


Neoplasma | 2014

Biological effects of four frequently used medicinal plants of Lamiaceae.

Srancikova A; Eva Horváthová; Katarína Kozics

Cancer is one of the leading causes of death characterized by uncontrolled growth and spread of cancer cells. There are several hundred thousands of new cases of cancer worldwide. Clinical oncology is still challenged by toxicity and side effects of multimodal therapy strategies in which it is associated with poor prognosis for patients. There is an urgent necessity to develop novel therapy strategies and to utilize preventive potential of natural compounds. As the majority of anticancer drugs are of natural origin, natural products represent a valuable source for the identification and development of novel treatment options and chemopreventive mechanisms for cancer. This review is focused on the summary of published knowledges on the antioxidant and potential chemopreventive effects of biologically active substances present in the extracts of four plants of the family Lamiaceae (sage, thyme, rosemary and lavander) in different animal and in vitro systems. It is assumed that the chemopreventive and chemotherapeutic potential of natural compounds is the result of a combined action of several mechanisms.


Scientific Reports | 2017

The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells

Andrea Puškárová; Mária Bučková; Lucia Kraková; Domenico Pangallo; Katarína Kozics

Six essential oils (from oregano, thyme, clove, lavender, clary sage, and arborvitae) exhibited different antibacterial and antifungal properties. Antimicrobial activity was shown against pathogenic (Escherichia coli, Salmonella typhimurium, Yersinia enterocolitica, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis) and environmental bacteria (Bacillus cereus, Arthrobacter protophormiae, Pseudomonas fragi) and fungi (Chaetomium globosum, Penicillium chrysogenum, Cladosporium cladosporoides, Alternaria alternata, and Aspergillus fumigatus). Oregano, thyme, clove and arborvitae showed very strong antibacterial activity against all tested strains at both full strength and reduced concentrations. These essential oils showed different fungistatic and fungicidal activities when tested by direct application and in the vapor phase. The genotoxic effects of these oils on HEL 12469 human embryo lung cells were evaluated using an alkaline comet assay for the first time, revealing that none of the oils induced significant DNA damage in vitro after 24u2009h. This study provides novel approaches for assessing the antimicrobial potential of essential oils in both direct contact and the vapor phase and also demonstrates the valuable properties of the phenol-free arborvitae oil. These results suggest that all the tested essential oils might be used as broad-spectrum anti-microbial agents for decontaminating an indoor environment.


Mutagenesis | 2015

Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress

Eva Horváthová; Annamária Srančíková; Eva Regendová-Sedláčková; Martina Melušová; Vladimír Meluš; Jana Netriová; Zdenka Krajčovičová; Darina Slameňová; Michal Pastorek; Katarína Kozics

Nature is an attractive source of therapeutic compounds. In comparison to the artificial drugs, natural compounds cause less adverse side effects and are suitable for current molecularly oriented approaches to drug development and their mutual combining. Medicinal plants represent one of the most available remedy against various diseases. Proper examples are Salvia officinalis L. and Thymus vulgaris L. which are known aromatic medicinal plants. They are very popular and frequently used in many countries. The molecular mechanism of their biological activity has not yet been fully understood. The aim of this study was to ascertain if liver cells of experimental animals drinking extracts of sage or thyme will manifest increased resistance against oxidative stress. Adult Sprague-Dawley rats were divided into seven groups. They drank sage or thyme extracts for 2 weeks. At the end of the drinking period, blood samples were collected for determination of liver biochemical parameters and hepatocytes were isolated to analyze (i) oxidatively generated DNA damage (conventional and modified comet assay), (ii) activities of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx)] and (iii) content of glutathione. Intake of sage and thyme had no effect either on the basal level of DNA damage or on the activity of SOD in rat hepatocytes and did not change the biochemical parameters of blood plasma. Simultaneously, the activity of GPx was significantly increased and the level of DNA damage induced by oxidants was decreased. Moreover, sage extract was able to start up the antioxidant protection expressed by increased content of glutathione. Our results indicate that the consumption of S.officinalis and T.vulgaris extracts positively affects resistency of rat liver cells against oxidative stress and may have hepatoprotective potential.


Oncotarget | 2017

Low numbers of pre-leukemic fusion genes are frequently present in umbilical cord blood without affecting DNA damage response

Pavol Kosik; Milan Skorvaga; Matus Durdik; Lukas Jakl; Ekaterina Nikitina; Eva Markova; Katarína Kozics; Eva Horváthová; Igor Belyaev

Despite widely accepted notion that many childhood leukemias are likely developed from hematopoietic stem/progenitor cells (HSPC) with pre-leukemic fusion genes (PFG) formed in embryonic/fetal development, the data on PFG incidence in newborns are contradictive. To provide a better understanding of a prenatal origin of leukemia, umbilical cord blood from 500 newborns was screened for the presence of the most frequent PFG associated with pediatric B-cell acute lymphoblastic leukemia. This screening revealed relatively high incidence of ETV6-RUNX1, BCR-ABL1 (p190) and MLL-AF4 at very low frequencies, averaging ~14 copies per 100,000 cells. We assume that most of these PFG might originate relatively late in embryonic/fetal development and will be eliminated later during postnatal development. The obtained results suggested that higher PFG copy numbers originating in specific time windows of the hematopoietic stem cell hierarchy may define a better prognostic tool for the assessment of leukemogenic potential. We have observed no significant effect of low-copy PFG on radiation-induced DNA damage response, accumulation of endogenous DNA double-stranded breaks, and apoptosis in either lymphocytes or HSPC. Imaging flow cytometry showed lower level of γH2AX foci in HSPC in comparison to lymphocytes suggesting better protection of HSPC from DNA damage.


Environmental and Molecular Mutagenesis | 2015

Ultraviolet A radiation potentiates the cytotoxic and genotoxic effects of 7 H-dibenzo[c,g]carbazole and its methyl derivatives.

Eva Sedlačková; Andrea Bábelová; Katarína Kozics; Michal Šelc; Annamária Srančíková; Vladimir Frecer; Alena Gábelová

7H‐Dibenzo[c,g]carbazole (DBC) is a heterocyclic aromatic hydrocarbon that is carcinogenic in many species and tissues. DBC is a common environmental pollutant, and is therefore constantly exposed to sunlight. However, there are limited data exploring the toxicity of DBC photoexcitation products. Here, we investigated the impact of ultraviolet (UV) A radiation on the biological activity of DBC and its methyl derivatives, 5,9‐dibenzo[c,g]carbazole and N‐methyl dibenzo[c,g]carbazole, on human skin HaCaT keratinocytes. Co‐exposure of HaCaT cells to UVA and DBC derivatives resulted in a sharp dose‐dependent decrease in cell survival and apparent changes in cell morphology. Under the same treatment conditions, significant increases in DNA strand breaks, intracellular reactive oxygen species, and oxidative damage to DNA were observed in HaCaT cells. Consistent with these results, an apparent inhibition in superoxide dismutase, but not glutathione peroxidase activity, was detected in cells treated with DBC and its derivatives under UVA irradiation. The photoactivation‐induced toxicity of individual DBC derivatives correlated with the electron excitation energies approximately expressed as the energy difference between the highest occupied and the lowest vacant molecular orbital. Our data provide the first evidence that UVA can enhance the toxicity of DBC and its derivatives. Photoactivation‐induced conversion of harmless chemical compounds to toxic photoproducts associated with reactive oxygen species generation may substantially amplify the adverse health effects of UVA radiation and contribute to increased incidence of skin cancer. Environ. Mol. Mutagen. 56:388–403, 2015.

Collaboration


Dive into the Katarína Kozics's collaboration.

Top Co-Authors

Avatar

Eva Horváthová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darina Slamenova

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Sevcovicova

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliska Galova

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alena Gábelová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jana Navarová

Slovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge