Katarína Mikušová
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katarína Mikušová.
Science | 2009
Vadim Makarov; Giulia Manina; Katarína Mikušová; Ute Möllmann; Olga Ryabova; Brigitte Saint-Joanis; Neeraj Dhar; Maria Rosalia Pasca; Silvia Buroni; Anna Paola Lucarelli; Anna Milano; Edda De Rossi; Martina Belanová; Adela Bobovská; Petronela Dianišková; Jana Korduláková; Claudia Sala; Elizabeth Fullam; Patricia Schneider; John D. McKinney; Priscille Brodin; Thierry Christophe; Simon J. Waddell; Philip D. Butcher; Jakob Albrethsen; Ida Rosenkrands; Roland Brosch; Vrinda Nandi; Sheshagiri Gaonkar; Radha Shandil
Ammunition for the TB Wars Tuberculosis is a major human disease of global importance resulting from infection with the air-borne pathogen Mycobacterium tuberculosis, which is becoming increasingly resistant to all available drugs. An antituberculosis benzothiazinone compound kills mycobacterium in infected cells and in mice. Makarov et al. (p. 801) have identified a sulfur atom and nitro residues important for benzothiazinones activity and used genetic methods and biochemical analysis to identify its target in blocking arabinogalactan biosynthesis during cell-wall synthesis. The compound affects the same pathway as ethambutol, and thus a benzothiazinone drug has the potential to become an important part of treatment of drug-resistant disease and, possibly, replace the less effective ethambutol in the primary treatment of tuberculosis. An isomerase required for cell-wall synthesis is a target for an alternative drug lead for tuberculosis treatment. New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.
Antimicrobial Agents and Chemotherapy | 1995
Katarína Mikušová; Richard A. Slayden; Gurdyal S. Besra; Patrick J. Brennan
The effect of ethambutol (EMB) is primarily on polymerization steps in the biosynthesis of the arabinan component of cell wall arabinogalactan (AG) of Mycobacterium smegmatis. Inhibition of the synthesis of the arabinan of lipoarabinomannan (LAM) occurred later, and thus in the cases of AG and LAM, the polymerization of D-arabinofuranose apparently involves separate pathways. While the synthesis of these arabinans was normal in an EMB-resistant isogeneic strain, the addition of EMB to the resistant strain resulted in partial inhibition of the synthesis of the arabinan of LAM and the emergence of a novel, truncated form of LAM, indicating partial susceptibility of the resistant gene(s) and providing a new intermediate in the LAM biosynthetic sequence. A consequence of inhibition of AG arabinan biosynthesis is the lack of new sites for mycolate attachment and thus the channeling of mycolate residues into a variety of free lipids which then accumulate. The primary biochemical effects of EMB can be explained by postulating separate AG and LAM pathways catalyzed by a variety of extramembranous arabinosyl transferases with various degrees of sensitivity to EMB.
Journal of Biological Chemistry | 2002
Jana Korduláková; Martine Gilleron; Katarína Mikušová; Germain Puzo; Patrick J. Brennan; Brigitte Gicquel; Mary Jackson
We examined the function of the pimA(Rv2610c) gene, located in the vicinity of the phosphatidylinositol synthase gene in the genomes of Mycobacterium tuberculosisand Mycobacterium smegmatis, which encodes a putative mannosyltransferase involved in the early steps of phosphatidylinositol mannoside synthesis. A cell-free assay was developed in which membranes from M. smegmatis overexpressing the pimA gene incorporate mannose from GDP-[14C]Man into di- and tri-acylated phosphatidylinositol mono-mannosides. Moreover, crude extracts from Escherichia coli producing a recombinant PimA protein synthesized diacylated phosphatidylinositol mono-mannoside from GDP-[14C]Man and bovine phosphatidylinositol. To determine whether PimA is an essential enzyme of mycobacteria, we constructed a pimA conditional mutant of M. smegmatis. The ability of this mutant to synthesize the PimA mannosyltransferase was dependent on the presence of a functional copy of the pimA gene carried on a temperature-sensitive rescue plasmid. We demonstrate here that the pimA mutant is unable to grow at the higher temperature at which the rescue plasmid is lost. Thus, the synthesis of phosphatidylinositol mono-mannosides and derived higher phosphatidylinositol mannosides in M. smegmatisappears to be dependent on PimA and essential for growth. This work provides the first direct evidence of the essentiality of phosphatidylinositol mannosides for the growth of mycobacteria.
Journal of Bacteriology | 2005
Katarína Mikušová; Hairong Huang; Tetsuya Yagi; Marcelle Holsters; Danny Vereecke; Wim D'Haeze; Michael S. Scherman; Patrick J. Brennan; Michael R. McNeil; Dean C. Crick
The major cell wall polysaccharide of mycobacteria is a branched-chain arabinogalactan in which arabinan chains are attached to the 5 carbon of some of the 6-linked galactofuranose residues; these arabinan chains are composed exclusively of D-arabinofuranose (Araf) residues. The immediate precursor of the polymerized Araf is decaprenylphosphoryl-D-Araf, which is derived from 5-phosphoribose 1-diphosphate (pRpp) in an undefined manner. On the basis of time course, feedback, and chemical reduction experiment results we propose that decaprenylphosphoryl-Araf is synthesized by the following sequence of events. (i) pRpp is transferred to a decaprenyl-phosphate molecule to form decaprenylphosphoryl-beta-D-5-phosphoribose. (ii) Decaprenylphosphoryl-beta-D-5-phosphoribose is dephosphorylated to form decaprenylphosphoryl-beta-D-ribose. (iii) The hydroxyl group at the 2 position of the ribose is oxidized and is likely to form decaprenylphosphoryl-2-keto-beta-D-erythro-pentofuranose. (iv) Decaprenylphosphoryl-2-keto-beta-D-erythro-pentofuranose is reduced to form decaprenylphosphoryl-beta-D-Araf. Thus, the epimerization of the ribosyl to an arabinosyl residue occurs at the lipid-linked level; this is the first report of an epimerase that utilizes a lipid-linked sugar as a substrate. On the basis of similarity to proteins implicated in the arabinosylation of the Azorhizobium caulidans nodulation factor, two genes were cloned from the Mycobacterium tuberculosis genome and expressed in a heterologous host, and the protein was purified. Together, these proteins (Rv3790 and Rv3791) are able to catalyze the epimerization, although neither protein individually is sufficient to support the activity.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Feng Wang; Dhinakaran Sambandan; Rajkumar Halder; Jianing Wang; Sarah M. Batt; Brian Weinrick; Insha Ahmad; Peng-Yu Yang; Yong Zhang; John Kim; Morad Hassani; Stanislav Huszár; Claudia Trefzer; Zhenkun Ma; Takushi Kaneko; Khisi E. Mdluli; Scott G. Franzblau; Arnab K. Chatterjee; Kai Johnson; Katarína Mikušová; Gurdyal S. Besra; Klaus Fütterer; William R. Jacobs; Peter G. Schultz
Significance The global problem of TB has worsened in recent years with the emergence of drug-resistant organisms, and new drugs are clearly needed. In a cell-based high-throughput screen, a small molecule, TCA1, was discovered that has activity against replicating and nonreplicating Mycobacterium tuberculosis. It is also efficacious in acute and chronic rodent models of TB alone or combined with frontline TB drugs. TCA1 functions by a unique mechanism, inhibiting enzymes involved in cell wall and molybdenum cofactor biosynthesis. This discovery represents a significant advance in the search for new agents to treat persistent and drug-resistant TB. A cell-based phenotypic screen for inhibitors of biofilm formation in mycobacteria identified the small molecule TCA1, which has bactericidal activity against both drug-susceptible and -resistant Mycobacterium tuberculosis (Mtb) and sterilizes Mtb in vitro combined with rifampicin or isoniazid. In addition, TCA1 has bactericidal activity against nonreplicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models both alone and combined with rifampicin or isoniazid. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb persistence. Genetic and affinity-based methods identified decaprenyl-phosphoryl-β-D-ribofuranose oxidoreductase DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as targets responsible for the activity of TCA1. These in vitro and in vivo results indicate that this compound functions by a unique mechanism and suggest that TCA1 may lead to the development of a class of antituberculosis agents.
Antimicrobial Agents and Chemotherapy | 1995
Lingyi Deng; Katarína Mikušová; K. G. Robuck; Michael S. Scherman; Patrick J. Brennan; Michael R. McNeil
Ethambutol is known to rapidly inhibit biosynthesis of the arabinan component of the mycobacterial cell wall core polymer, arabinogalactan (K. Takayama and J. O. Kilburn, Antimicrob. Agents Chemother. 33:1493-1499, 1989). This effect was confirmed, and it was also shown that ethambutol inhibits biosynthesis of the arabinan of lipoarabinomannan, a lipopolysaccharide noncovalently associated with the cell wall core. In contrast to cell wall core arabinan, which is completely inhibited by ethambutol, synthesis of the arabinan of lipoarabinomannan was only partially affected, demonstrating a differential effect on arabinan synthesis in the two locales. Further studies of the effect of ethambutol on cell wall biosynthesis revealed that the synthesis of galactan in the cell wall core is strongly inhibited by the drug. In addition, ethambutol treatment resulted in the cleavage of arabinosyl residues present in the mycobacterial cell wall; more than 50% of the arabinan in the cell wall core was removed from the wall 1 h after addition of the drug to growing mycobacterial cultures. In contrast, galactan was not released from the cell wall during ethambutol treatment. The natural function of the arabinosyl-releasing enzyme remains unknown, but its action in combination with inhibition of synthesis during ethambutol treatment results in severe disruption of the mycobacterial cell wall. Accordingly, ethambutol-induced damage to the cell wall provides a ready molecular explanation for the known synergetic effects of ethambutol with other chemotherapeutic agents. Nevertheless, the initial direct effect of ethambutol remains to be elucidated.
Journal of Biological Chemistry | 2000
Katarína Mikušová; Tetsuya Yagi; Richard J. Stern; Michael R. McNeil; Gurdyal S. Besra; Dean C. Crick; Patrick J. Brennan
The structural core of the cell walls ofMycobacterium spp. consists of peptidoglycan bound by a linker unit (-α-L-Rhap-(1→3)-D-GlcNAc-P-) to a galactofuran, which in turn is attached to arabinofuran and mycolic acids. The sequence of reactions leading to the biogenesis of this complex starts with the formation of the linker unit on a polyprenyl-P to produce polyprenyl-P-P-GlcNAc-Rha (Mikušová, K., Mikuš, M., Besra, G. S., Hancock, I., and Brennan, P. J. (1996) J. Biol. Chem. 271, 7820–7828). We now establish that formation of the galactofuran takes place on this intermediate with UDP-Galf as the Galf donor presented in the form of UDP-Galpand UDP-Galp mutase (the glf gene product) and is catalyzed by galactofuranosyl transferases, one of which, theMycobacterium tuberculosis H37Rv3808c gene product, has been identified. Evidence is also presented for the growth of the arabinofuran on this polyprenyl-P-P-linker unit-galactan intermediate catalyzed by unidentified arabinosyl transferases, with decaprenyl-P-Araf or 5-P-ribosyl-PP as the Arafdonor. The product of these steps, the lipid-linked-LU-galactan-arabinan has been partially characterized in terms of its heterogeneity, size, and composition. Biosynthesis of the major components of mycobacterial cell walls is proving to be extremely complex. However, partial definition of arabinogalactan synthesis, the site of action of several major anti-tuberculosis drugs, facilitates the present day thrust for new drugs to counteract multiple drug-resistant tuberculosis.
Journal of Biological Chemistry | 2007
Marcelo E. Guerin; Jana Korduláková; Francis Schaeffer; Zuzana Svetlíková; Alejandro Buschiazzo; David Giganti; Brigitte Gicquel; Katarína Mikušová; Mary Jackson; Pedro M. Alzari
Mycobacterial phosphatidylinositol mannosides (PIMs) and metabolically derived cell wall lipoglycans play important roles in host-pathogen interactions, but their biosynthetic pathways are poorly understood. Here we focus on Mycobacterium smegmatis PimA, an essential enzyme responsible for the initial mannosylation of phosphatidylinositol. The structure of PimA in complex with GDP-mannose shows the two-domain organization and the catalytic machinery typical of GT-B glycosyltransferases. PimA is an amphitrophic enzyme that binds mono-disperse phosphatidylinositol, but its transferase activity is stimulated by high concentrations of non-substrate anionic surfactants, indicating that the early stages of PIM biosynthesis involve lipid-water interfacial catalysis. Based on structural, calorimetric, and mutagenesis studies, we propose a model wherein PimA attaches to the membrane through its N-terminal domain, and this association leads to enzyme activation. Our results reveal a novel mode of phosphatidylinositol recognition and provide a template for the development of potential antimycobacterial compounds.
Journal of Biological Chemistry | 1996
Kay-Hooi Khoo; Edward Douglas; Parastoo Azadi; Julia M. Inamine; Gurdyal S. Besra; Katarína Mikušová; Patrick J. Brennan; Delphi Chatterjee
The anti-tuberculosis drug, ethambutol (Emb), was previously shown to inhibit the synthesis of arabinans of both the cell wall arabinogalactan (AG) and lipoarabinomannan (LAM) of Mycobacterium tuberculosis and other mycobacteria. However, an Emb-resistant mutant, isolated by consecutive passage of the Mycobacterium smegmatis parent strain in media containing increasing concentrations of Emb, while synthesizing a normal version of AG, produced truncated forms of LAM when maintained on 10 μg/ml Emb (Mikušová, K., Slayden, R. A., Besra, G. S., and Brennan, P. J. (1995) Antimicrob. Agents Chemother. 39, 2482-2489). We have now isolated and characterized the truncated LAMs made by both the resistant mutant and a recombinant strain transfected with a plasmid containing the emb region from Mycobacterium avium which encodes for Emb resistance. By chemical analysis, endoarabinanase digestion, high pH anion exchange chromatography, and mass spectrometry analyses, truncation was demonstrated as primarily a consequence of selective and partial inhibition of the synthesis of the linear arabinan terminal motif, which constitutes a substantial portion of the arabinan termini in LAM but not of AG. However, at higher concentrations, Emb also affected the general biosynthesis of arabinan destined for both AG and LAM, resulting in severely truncated LAM as well as AG with a reduced Ara:Gal ratio. The results suggested that Emb exerts its antimycobacterial effect by inhibiting an array of arabinosyltransferases involved in the biosynthesis of arabinans unique to the mycobacterial cell wall. It was further concluded that the uniquely branched terminal Ara6 motif common to both AG and LAM is an essential structural entity for a functional cell wall and, consequently, that the biosynthetic machinery responsible for its synthesis is the effective target of Emb in its role as a potent anti-tuberculosis drug.
Journal of Bacteriology | 2008
Martina Beláňová; Petronela Dianišková; Patrick J. Brennan; Gladys C. Completo; Natisha L. Rose; Todd L. Lowary; Katarína Mikušová
Two galactosyl transferases can apparently account for the full biosynthesis of the cell wall galactan of mycobacteria. Evidence is presented based on enzymatic incubations with purified natural and synthetic galactofuranose (Galf) acceptors that the recombinant galactofuranosyl transferase, GlfT1, from Mycobacterium smegmatis, the Mycobacterium tuberculosis Rv3782 ortholog known to be involved in the initial steps of galactan formation, harbors dual beta-(1-->4) and beta-(1-->5) Galf transferase activities and that the product of the enzyme, decaprenyl-P-P-GlcNAc-Rha-Galf-Galf, serves as a direct substrate for full polymerization catalyzed by another bifunctional Galf transferase, GlfT2, the Rv3808c enzyme.