Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarina Radošević is active.

Publication


Featured researches published by Katarina Radošević.


Science | 2015

A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen

Antonietta Impagliazzo; Fin Milder; Harmjan Kuipers; Michelle Wagner; Xueyong Zhu; Ryan M. B. Hoffman; Ruud van Meersbergen; Jeroen Huizingh; Patrick Wanningen; Johan W. A. Verspuij; Martijn de Man; Zhaoqing Ding; Adrian Apetri; Başak Kükrer; Eveline Sneekes-Vriese; Danuta Tomkiewicz; Nick S. Laursen; Peter S. Lee; Anna Zakrzewska; Liesbeth Dekking; Jeroen Tolboom; Lisanne Tettero; Sander van Meerten; Wenli Yu; Wouter Koudstaal; Jaap Goudsmit; Andrew B. Ward; Wim Meijberg; Ian A. Wilson; Katarina Radošević

Flu vaccine candidate STEMs the tide Every year we need a new flu vaccine, because influenza virus constantly mutates the major target of antibodies to flu: the “head” region of the viral hemagglutinin (HA) protein. Avoiding the problem of mutation requires a vaccine that elicits antibodies against the more conserved “stem” region of HA. During infection, antibodies are occasionally produced that recognize the stem and that neutralize a broad range of influenza virus strains. Impagliazzo et al. engineered an HA stem–only vaccine candidate that elicited broadly neutralizing antibodies in mice and nonhuman primates and that protected mice against multiple influenza strains. Science, this issue p. 1301 An engineered stem-only hemagglutinin vaccine candidate provides broad protection in an animal model of influenza infection. The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens (“mini-HAs”) based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses.


Infection and Immunity | 2007

Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon.

Katarina Radošević; Catharina W. Wieland; Ariane Rodriguez; Gerrit Jan Weverling; Ratna Mintardjo; Gert Gillissen; Ronald Vogels; Yasir A. W. Skeiky; David M. Hone; Jerald C. Sadoff; Tom van der Poll; Menzo Jans Emco Havenga; Jaap Goudsmit

ABSTRACT There is an urgent need for an efficacious vaccine against tuberculosis (TB). Cellular immune responses are key to an effective protective response against TB. Recombinant adenovirus (rAd) vectors are especially suited to the induction of strong T-cell immunity and thus represent promising vaccine vehicles for the prevention of TB. We have previously reported on rAd vector serotype 35, the serotype of choice due to low preexisting immunity worldwide, which expresses a unique fusion protein of Mycobacterium tuberculosis antigens Ag85A, Ag85B, and TB10.4 (Ad35-TBS). Here, we demonstrate that Ad35-TBS confers protection against M. tuberculosis when administered to mice through either an intranasal or an intramuscular route. Histological evaluation of lung tissue corroborated the protection and, in addition, demonstrated differences between two mouse strains, with diffuse inflammation in BALB/c mice and distinct granuloma formation in C57BL/6 mice. Epitope mapping analysis in these mouse strains showed that the major T-cell epitopes are conserved in the artificial fusion protein, while three novel CD8 peptides were discovered. Using a defined set of T-cell epitopes, we reveal differences between the two mouse strains in the type of protective immune response, demonstrating that different antigen-specific gamma interferon (IFN-γ)-producing T cells can provide protection against M. tuberculosis challenge. While in BALB/c (H-2d) mice, a dominant CD8 T-cell response was detected, in C57BL/6 (H-2b) mice, more balanced CD4/CD8 T-cell responses were observed, with a more pronounced CD4 response in the lungs. These results unify conflicting reports on the relative importance of CD4 versus CD8 T-cell responses in protection and emphasize the key role of IFN-γ.


Cancer Research | 2004

C-Type Lectin-Like Molecule-1 A Novel Myeloid Cell Surface Marker Associated with Acute Myeloid Leukemia

Alexander Berthold Hendrik Bakker; Sonja van den Oudenrijn; Arjen Q. Bakker; Nicole Feller; Marja van Meijer; Judith Bia; Mandy Jongeneelen; Therese J. Visser; Nora Bijl; Cecilia A.W. Geuijen; Wilfred E. Marissen; Katarina Radošević; Mark Throsby; Gerrit Jan Schuurhuis; Gert J. Ossenkoppele; John de Kruif; Jaap Goudsmit; Ada M. Kruisbeek

Acute myeloid leukemia (AML) has a poor prognosis due to treatment-resistant relapses. A humanized anti-CD33 antibody (Mylotarg) showed a limited response rate in relapsed AML. To discover novel AML antibody targets, we selected a panel of single chain Fv fragments using phage display technology combined with flow cytometry on AML tumor samples. One selected single chain Fv fragment broadly reacted with AML samples and with myeloid cell lineages within peripheral blood. Expression cloning identified the antigen recognized as C-type lectin-like molecule-1 (CLL-1), a previously undescribed transmembrane glycoprotein. CLL-1 expression was analyzed with a human anti-CLL-1 antibody that was generated from the single chain Fv fragment. CLL-1 is restricted to the hematopoietic lineage, in particular to myeloid cells present in peripheral blood and bone marrow. CLL-1 is absent on uncommitted CD34+/CD38− or CD34+/CD33− stem cells and present on subsets of CD34+/CD38+ or CD34+/CD33+ progenitor cells. CLL-1 is not expressed in any other tissue. In contrast, analysis of primary AMLs demonstrated CLL-1 expression in 92% (68 of 74) of the samples. As an AML marker, CLL-1 was able to complement CD33, because 67% (8 of 12) of the CD33− AMLs expressed CLL-1. CLL-1 showed variable expression (10–60%) in CD34+ cells in chronic myelogenous leukemia and myelodysplastic syndrome but was absent in 12 of 13 cases of acute lymphoblastic leukemia. The AML reactivity combined with the restricted expression on normal cells identifies CLL-1 as a novel potential target for AML treatment.


Infection and Immunity | 2006

Immunogenicity and Protection of a Recombinant Human Adenovirus Serotype 35-Based Malaria Vaccine against Plasmodium yoelii in Mice

Olga Ophorst; Katarina Radošević; Menzo Jans Emco Havenga; Maria Grazia Pau; Lennart Holterman; Ben Berkhout; Jaap Goudsmit; M. Tsuji

ABSTRACT Given the promise of recombinant adenovirus type 5 (rAd5) as a malaria vaccine carrier in preclinical models, we evaluated the potency of rAd35 coding for Plasmodium yoelii circumsporozoite protein (rAd35PyCS). We chose rAd35 since a survey with serum samples from African subjects demonstrated that human Ad35 has a much lower seroprevalence of 20% and a much lower geometric mean neutralizing antibody titer (GMT) of 48 compared to Ad5 (seroprevalence, 85%; GMT, 1,261) in countries with a high malaria incidence. We also demonstrated that immunization with rAd35PyCS induced a dose-dependent and potent, CS-specific CD8+ cellular and humoral immune response and conferred significant inhibition (92 to 94%) of liver infection upon high-dose sporozoite challenge. Furthermore, we showed that in mice carrying neutralizing antibody activity against Ad5, mimicking a human situation, CS-specific T- and B-cell responses were significantly dampened after rAd5PyCS vaccination, resulting in loss of inhibition of liver infection upon sporozoite challenge. In contrast, rAd35 vaccine was as potent in naive mice as in Ad5-preimmunized mice. Finally, we showed that heterologous rAd35-rAd5 prime-boost regimens were more potent than rAd35-rAd35 because of induction of anti-Ad35 antibodies after rAd35 priming. The latter data provide a further rationale for developing rAd prime-boost regimens but indicate that priming and boosting Ad vectors must be immunologically distinct and also should be distinct from Ad5. Collectively, the data presented warrant further development of rAd35-based vaccines against human malaria.


Clinical and Vaccine Immunology | 2010

The Th1 Immune Response to Plasmodium falciparum Circumsporozoite Protein Is Boosted by Adenovirus Vectors 35 and 26 with a Homologous Insert

Katarina Radošević; Ariane Rodriguez; Angelique A. C. Lemckert; Marjolein van der Meer; Gert Gillissen; Carolien Warnar; Rie von Eyben; Maria Grazia Pau; Jaap Goudsmit

ABSTRACT The most advanced malaria vaccine, RTS,S, is comprised of an adjuvant portion of the Plasmodium falciparum circumsporozoite (CS) protein fused to and admixed with the hepatitis B virus surface antigen. This vaccine confers short-term protection against malaria infection, with an efficacy of about 50%, and induces particularly B-cell and CD4+ T-cell responses. In the present study, we tested by the hypothesis that the Th1 immune response to CS protein, in particular the CD8+ T-cell response, which is needed for strong and lasting malaria immunity, is boosted to sustainable levels vectors adenovirus and 26 with an homologous insert 35 (Ad35.CS/Ad26.CS). In this study, we evaluated immune responses induced with vaccination regimens based on an adjuvant-containing, yeast-produced complete CS protein followed by two recombinant low-seroprevalence adenoviruses expressing P. falciparum CS antigen, Ad35.CS (subgroup B) and Ad26.CS (subgroup D). Our results show that (i) the yeast (Hansenula polymorpha)produced, adjuvanted full-length CS protein is highly potent in inducing high CS-specific humoral responses in mice but produces poor T-cell responses, (ii) the Ad35.CS vector boosts the gamma interferon-positive (IFN-γ+) CD8+ T-cell response induced by the CS protein immunization and shifts the immune response toward the Th1 type, and (iii) a three-component heterologous vaccination comprised of a CS protein prime followed by boosts with Ad35.CS and Ad26.CS elicits an even more robust and sustainable IFN-γ+ CD8+ T-cell response than one- or two-component regimens. The Ad35.CS/Ad26.CS combination boosted particularly the IFN-γ+ and tumor necrosis factor alpha-positive (TNF-α+) T cells, confirming the shift of the immune response from the Th2 type to the Th1 type. These results support the notion of first immunizations of infants with an adjuvanted CS protein vaccine, followed by a booster Ad35.CS/Ad26.CS vaccine at a later age, to induce lasting protection against malaria for which the Th1 response and immune memory is required.


Expert Review of Vaccines | 2009

Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects

Katarina Radošević; Ariane Rodriguez; Angelique A. C. Lemckert; Jaap Goudsmit

Classical vaccination approaches, based on a single vaccine administered in a homologous prime–boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime–boost vaccination modalities currently in development for the ‘big three’ poverty-related diseases and emphasizes the need for innovative vaccination approaches.


Vaccine | 2008

Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: impact of distinct additional adjuvants.

Katarina Radošević; Ariane Rodriguez; Ratna Mintardjo; Dennis Tax; Karin Lövgren Bengtsson; Catherine Thompson; Maria Zambon; Gerrit Jan Weverling; Fons Uytdehaag; Jaap Goudsmit

A highly efficacious vaccine is required to counteract a threat of an avian influenza pandemic. Increasing the potency of vaccines by adjuvation is essential not only to overcome generally low immunogenicity of pandemic strains, but also to allow dose sparing and as such to make it feasible to satisfy huge global production demands. In this study we evaluated the ability of four distinct adjuvants to further increase immune responses to a virosomal adjuvanted avian H9N2 influenza vaccine in mice. Currently registered adjuvants aluminium phosphate, aluminium hydroxide and MF59, as well as a novel promising adjuvant MATRIX-M were included in the study. Our results demonstrate that all adjuvants significantly increased the H9N2 haemagglutinin (HA) inhibition and ELISA antibody titers induced with the virosomal adjuvanted vaccine. The adjuvants exhibited different effect on the isotype of virus specific antibodies, with MATRIX-M inducing the most pronounced skewing to IgG2a, i.e. towards Th1 type of response. While the virosomal adjuvanted pandemic influenza vaccine efficiently induced CD4(+) T-cell response, with no further increase upon adjuvation, the CD8(+) T-cell responses induced with virosomal adjuvanted vaccine could be significantly improved upon additional adjuvation with MATRIX-M or MF59. All adjuvants demonstrated a dose sparing effect, i.e. in combination with the virosomal adjuvanted pandemic influenza vaccine they increased immune responses to comparable level independent of the tested vaccine dose. In conclusion, our results demonstrate that immune responses to a virosomal adjuvanted pandemic influenza vaccine can be further enhanced by add-on adjuvants, with MATRIX-M being overall the most potent adjuvant in combination with virosomes, followed by MF59 and finally aluminium-based adjuvants.


Vaccine | 2009

Evaluation of a prime-boost vaccine schedule with distinct adenovirus vectors against malaria in rhesus monkeys.

Ariane Rodriguez; Ratna Mintardjo; Dennis Tax; Gert Gillissen; Jerome Custers; Maria Grazia Pau; Jaco M. Klap; Sampa Santra; Harikrishnan Balachandran; Norman L. Letvin; Jaap Goudsmit; Katarina Radošević

A vaccine that elicits both specific antibodies and IFN-gamma-producing T cells is required to protect against pre-erythrocytic malaria. Among the most promising approaches to induce such complex immunity are heterologous prime-boost vaccination regimens, in particular ones containing live viral vector. We have demonstrated previously that adenovectors serotype 35 (Ads35) encoding the circumsporozoite (CS) antigen or liver-stage antigen-1 (LSA-1) are highly effective in improving the T-cell responses induced by immunizations with protein-based vaccines in a heterologous prime-boost schedule. Here we evaluated the potential of a heterologous prime-boost vaccination that combines the Ad35.CS vector with the serologically distinct adenovector Ad5.CS, in rhesus macaques, after establishing the potency in mice. We show that the heterologous Ad35.CS/Ad5.CS prime-boost regimen elicits both antibody responses and robust IFN-gamma-producing CD8(+) T-cell responses against the CS antigen. Analysis of the quality of the antibody responses in rhesus macaques, using indirect immunofluorescence assay (IFA) with Plasmodium falciparum-coated slides, demonstrated that this heterologous prime-boost regimen elicits a high titer of antibodies that are able to bind to P. falciparum sporozoites. Level of the IFA response was superior to the response measured with sera of an adult human population living in endemic malaria region. In conclusion, the combination of Ad35.CS, a vaccine based on a rare serotype adenovirus, with Ad5.CS or possibly another adenovector of a distinct serotype, induces a complex immune response that is required for protection against malaria, and is thus a highly promising approach for pediatric vaccination.


Infection and Immunity | 2008

Impact of recombinant adenovirus serotype 35 priming versus boosting of a Plasmodium falciparum protein: characterization of T- and B-cell responses to liver-stage antigen 1.

Ariane Rodriguez; Jaap Goudsmit; Arjen Companjen; Ratna Mintardjo; Gert Gillissen; Dennis Tax; Jeroen Sijtsma; Gerrit Jan Weverling; Lennart Holterman; David E. Lanar; Menzo Jans Emco Havenga; Katarina Radošević

ABSTRACT Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus serotype 35 coding for CS (rAd35.CS). The current study was designed to answer the question whether such an effect can be extended to liver-stage antigens (LSA) of Plasmodium falciparum such as LSA-1. Studies with mice have demonstrated that the LSA-1 protein induces strong antibody response but a weak T-cell immunity. We first identified T-cell epitopes in LSA-1 by use of intracellular gamma interferon (IFN-γ) staining and confirmed these epitopes by means of enzyme-linked immunospot assay and pentamer staining. We show that a single immunization with rAd35.LSA-1 induced a strong antigen-specific IFN-γ CD8+ T-cell response but no measurable antibody response. In contrast, vaccinations with the adjuvanted recombinant LSA-1 protein induced remarkably low cellular responses but strong antibody responses. Finally, both priming and boosting of the adjuvanted protein by rAd35 resulted in enhanced T-cell responses without impairing the level of antibody responses induced by the protein immunizations alone. Furthermore, the incorporation of rAd35 in the vaccination schedule led to a skewing of LSA-1-specific antibody responses toward a Th1-type immune response. Our results show the ability of rAd35 to induce potent T-cell immunity in combination with protein in a prime-boost schedule without impairing the B-cell response.


PLOS ONE | 2012

Ad35 and Ad26 Vaccine Vectors Induce Potent and Cross-Reactive Antibody and T-Cell Responses to Multiple Filovirus Species

Roland Zahn; Gert Gillisen; Anna Roos; Marina Koning; Esmeralda van der Helm; Dirk Spek; Mo Weijtens; Maria Grazia Pau; Katarina Radošević; Gerrit Jan Weverling; Jerome Custers; Jort Vellinga; Hanneke Schuitemaker; Jaap Goudsmit; Ariane Rodriguez

Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years.

Collaboration


Dive into the Katarina Radošević's collaboration.

Researchain Logo
Decentralizing Knowledge