Katarina Vogel-Mikuš
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katarina Vogel-Mikuš.
Plant Cell and Environment | 2008
Katarina Vogel-Mikuš; Jure Simčič; Primož Pelicon; M. Budnar; Peter Kump; Marijan Nečemer; Jolanta Mesjasz-Przybyłowicz; Wojciech J. Przybyłowicz; Marjana Regvar
A detailed localization of elements in leaf tissues of the field-collected Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae) growing at a highly metal-polluted site was determined by micro-proton-induced X-ray emission (micro-PIXE) in order to reveal and compare nutrient and non-essential element accumulation patterns in the case of multiple metal accumulation within particular leaf tissues, including the detailed distribution between apoplast and symplast regions. On the larger scans, the highest concentrations of metals were observed in the epidermis, S and Ca in the palisade mesophyll, Cl in the spongy mesophyll and vascular bundles, and P and K in the vascular bundles. On the more detailed scans, the highest Cd, Pb, Cl and K concentrations were observed in vascular bundle collenchyma. The relative element distribution (%) was calculated based on concentrations of elements in particular leaf tissues and their relative weight portions, indicating that most of the accumulated Zn was located in epidermises, while the majority of Cd and Pb was distributed within the mesophyll. Detailed scans of epidermal/mesophyll tissues revealed that Zn was mainly accumulated and detoxified in the symplast of large vacuolated epidermal cells, Cd in the mesophyll symplast, and Pb in the mesophyll symplast and apoplast.
New Phytologist | 2008
Katarina Vogel-Mikuš; Marjana Regvar; Jolanta Mesjasz-Przybyłowicz; Wojciech J. Przybyłowicz; Jure Simčič; Primož Pelicon; M. Budnar
* Localization of cadmium (Cd) and other elements was studied in the leaves of the field-collected cadmium/zinc (Cd/Zn) hyperaccumulator Thlaspi praecox from an area polluted with heavy metals near a lead mine and smelter in Slovenia, using micro-PIXE (proton-induced X-ray emission). * The samples were prepared using cryofixation. Quantitative elemental maps and average concentrations in whole-leaf cross-sections and selected tissues were obtained. * Cd was preferentially localized in the lower epidermis (820 microg g(-1) DW), vascular bundles and upper epidermis, whereas about twice the lower concentrations were found in the mesophyll. * Taking into account the large volume of the mesophyll compared with the epidermis, the mesophyll is indicated as a relatively large pool of Cd, possibly involved in Cd detoxification/dilution at the tissue and cellular level.
Journal of Experimental Botany | 2011
Marjana Regvar; Diane Eichert; Burkhard Kaulich; Alessandra Gianoncelli; Paula Pongrac; Katarina Vogel-Mikuš; Ivan Kreft
Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved.
Journal of the Royal Society Interface | 2009
Burkhard Kaulich; Alessandra Gianoncelli; Alfred Beran; Diane Eichert; Ivan Kreft; Paula Pongrac; Marjana Regvar; Katarina Vogel-Mikuš; M. Kiskinova
Biological systems are unique matter with very complex morphology and highly heterogeneous chemical composition dominated by light elements. Discriminating qualitatively at the sub-micrometer level the lateral distribution of constituent elements, and correlating it to the sub-cellular biological structure, continues to be a challenge. The low-energy X-ray fluorescence microspectroscopy, recently implemented in TwinMic scanning transmission mode, has opened up new opportunities for mapping the distribution of the light elements, complemented by morphology information provided by simultaneous acquisition of absorption and phase contrast images. The important new information that can be obtained in bio-related research domains is demonstrated by two pilot experiments with specimens of interest for marine biology and food science. They demonstrate the potential to yield important insights into the structural and compositional enrichment, distribution and correlation of essential trace elements in the lorica of Tintinnopsis radix, and the lateral distribution of trace nutrients in the seeds of wheat Triticum aestivum.
Plant Cell and Environment | 2014
Isabelle S. Lefèvre; Katarina Vogel-Mikuš; Luka Jeromel; Primož Vavpetič; Sébastien Planchon; Iztok Arčon; Johannes T. van Elteren; Gilles Lepoint; Sylvie Gobert; Jenny Renaut; Primož Pelicon; Stanley Lutts
Cadmium and zinc share many similar physiochemical properties, but their compartmentation, complexation and impact on other mineral element distribution in plant tissues may drastically differ. In this study, we address the impact of 10 μm Cd or 50 μm Zn treatments on ion distribution in leaves of a metallicolous population of the non-hyperaccumulating species Zygophyllum fabago at tissue and cell level, and the consequences on the plant response through a combined physiological, proteomic and metabolite approach. Micro-proton-induced X-ray emission and laser ablation inductively coupled mass spectrometry analyses indicated hot spots of Cd concentrations in the vicinity of vascular bundles in response to Cd treatment, essentially bound to S-containing compounds as revealed by extended X-ray absorption fine structure and non-protein thiol compounds analyses. A preferential accumulation of Zn occurred in vascular bundle and spongy mesophyll in response to Zn treatment, and was mainly bound to O/N-ligands. Leaf proteomics and physiological status evidenced a protection of photosynthetically active tissues and the maintenance of cell turgor through specific distribution and complexation of toxic ions, reallocation of some essential elements, synthesis of proteins involved in photosynthetic apparatus or C-metabolism, and metabolite synthesis with some specificities regarding the considered heavy metal treatment.
Journal of Hazardous Materials | 2013
Lyudmila Lyubenova; Paula Pongrac; Katarina Vogel-Mikuš; Gašper Kukec Mezek; Primož Vavpetič; Nataša Grlj; Marjana Regvar; Primož Pelicon; Peter Schröder
Understanding the uptake, accumulation and distribution of toxic elements in plants is crucial to the design of effective phytoremediation strategies, especially in the case of complex multi-element pollution. Using micro-proton induced X-ray emission, the spatial distribution of Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Zn, As, Br, Rb, Sr, Cd and Pb have been quantitatively resolved in roots and rhizomes of an obligate wetland plant species, Typha latifolia, treated with a mixture of 100 μM each of As, Cd and Pb, together. The highest concentrations of As, Cd and Pb were found in the roots of the T. latifolia, with tissue-specific distributions. The As was detected in the root rhizodermis, and in the rhizome the majority of the As was within the vascular tissues, which indicates the high mobility of As within T. latifolia. The Cd was detected in the root exodermis, and in the vascular bundle and epidermis of the rhizome. The highest Pb concentrations were detected in the root rhizodermis and exodermis, and in the epidermis of the rhizome. These data represent an essential step in the resolution of fundamental questions in plant ionomics.
Folia Geobotanica | 2003
Marjana Regvar; Katarina Vogel-Mikuš; Tanja Ševerkar
Inoculum of an indigenous mixture of arbuscular mycorrhizal fungi (AMF) containingGlomus mosseae, Glomus fasciculatum, Glomus etunicatum, Glomus intraradices andScutellospora sp. was applied to four of the most frequently used crop species in Slovenia: green pepper (Capsicum annuum), parsley (Petroselinum crispum), carrot (Daucus carrota) and tomato (Lycopersicon esculentum). A simple, feasible, and effective protocol for application of AMF biotechnology in horticulture was adopted.Mycorrhizal inoculation significantly increased the plant biomass parameters of pepper, and parsley and the root biomass of carrots. Statistically significant correlations between biomass parameters of pepper, parsley, and the root biomass of carrots with mycorrhizal colonization parameters (mycorrhizal frequency (F%), global mycorrhizal intensity (M%) and arbuscular richness (A%) were calculated. A significant increase in chlorophyll content was observed in mycorrhizal parsley and a significant increase in carotenoids was observed in mycorrhizal parsley, carrots, and tomato fruits. A significant increase in titratable acidity of fruits from inoculated tomato plants indicates prolonged fruiting period of mycorrhizal tomatoes. In addition, inoculation with an indigenous AMF mixture significantly increased the mycorrhizal potential of soil and thus the growth of non-inoculated plants in the second season. Thus, the results confirmed the potential of applying mycorrhizal biotechnology in sustainable horticulture.
Journal of Experimental Botany | 2013
Sudhir P. Singh; Katarina Vogel-Mikuš; Iztok Arčon; Primož Vavpetič; Luka Jeromel; Primož Pelicon; Jitendra Kumar; Rakesh Tuli
Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.
Journal of Photochemistry and Photobiology B-biology | 2014
Katja Klančnik; Katarina Vogel-Mikuš; Alenka Gaberščik
Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.
Analytica Chimica Acta | 2013
Marta Debeljak; Johannes T. van Elteren; Katarina Vogel-Mikuš
A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm(-2); repetition rate, 20 Hz; dwell time, 1s; acquisition time, 0.1s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg(-1) DW HgCl2. It was found that at given Hg concentrations in the substrate Hg ions practically do not cross root plasma membranes of the endodermal barrier, but are entirely retained in the root apoplastic space. This suggests that maize plants grown in Hg-contaminated areas translocate Hg to the upper edible parts of the plant only to a small extent.