Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna A. Palinska is active.

Publication


Featured researches published by Katarzyna A. Palinska.


Archives of Microbiology | 1996

Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates

Katarzyna A. Palinska; Werner Liesack; Erhard Rhiel; Wolfgang E. Krumbein

Five Merismopedia-like cyanobacterial strains were collected from microbial mats at Norderney Island, subcultured in the laboratory, and finally grown as unicyanobacterial cultures. As a sixth strain, Merismopediaglauca from the „Sammlung von Algenkulturen“ at Göttingen (SAG) was used for comparisons. According to morphological and physiological characteristics initially observed in the field and during initial subculturing, the five strains were assigned to the species Merismopedia glauca, Merismopedia punctata, or Merismopedia elegans. However, after prolonged maintenance under laboratory conditions, the formation of platelet-like colonies stopped, whereas cell sizes, production of extracellular polymeric substances, and division patterns were stably maintained. These physiological and morphological parameters allowed us to divide the six strains into two clusters. This division was further supported by the profiling of total cell protein and phycobilisomes using SDS-PAGE. The nearly complete 16S rDNA sequence of three of the six isolates was determined. The comparative sequencing analysis revealed an almost 100% identity of these three Merismopedia-like strains. The evolutionary distance dendrogram constructed placed this Merismopedia cluster into a common line of descent with Synechocystis sp. strain PCC6906. Based on the analysis of common stretches of 1,050 nucleotides, the overall similarity between the sequence types of „Merismopedia“ and „Synechocystis“ is 96–97%. The values of the different methods for taxonomic classification of unicyanobacterial strains, the relationship of the cyanobacterial genera Merismopedia, Synechococcus, Synechocystis, and Eucapsis sp., and the functional role of different Merismopedia morphologies within microbial mats are discussed. It is suggested that all analyzed Merismopedia strains be combined into one species, namely Merismopediapunctata Meyen (1839).


International Journal of Systematic and Evolutionary Microbiology | 2000

Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria).

Rosmarie Rippka; Thérèse Coursin; Wolfgang R. Hess; Christiane Lichtlé; David J. Scanlan; Katarzyna A. Palinska; Isabelle Iteman; Frédéric Partensky; Jean Houmard; Michael Herdman

The formal description of Prochlorococcus marinus Chisholm et al. 1992, 299 was based on the non-axenic nomenclatural type, strain CCMP 1375T. The purification and properties of the axenic strain PCC 9511, derived from the same primary culture (SARG) as the type species, are reported here. Prochlorococcus PCC 9511 differs from the latter in possessing horseshoe-shaped thylakoids, exhibiting a low chlorophyll b2 content and lacking phycoerythrin, but shares these phenotypic properties with Prochlorococcus strain CCMP 1378. This relationship was confirmed by 16S rRNA sequence analyses, which clearly demonstrated that the axenic isolate is not co-identic with the nomenclatural type. Strain PCC 9511 has a low mean DNA base composition (32 mol% G+C) and harbours the smallest genome of all known oxyphotobacteria (genome complexity 1.3 GDa = 2 Mbp). Urea and ammonia are the preferred sources of nitrogen for growth, whereas nitrate is not utilized. Several different organic phosphorus compounds efficiently replace phosphate in the culture medium, indicative of ecto-phosphohydrolase activity. In order to distinguish strain PCC 9511 from the nomenclatural type, a new subspecies is proposed, Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov.


Archives of Microbiology | 2007

Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites

Jürgen Marquardt; Katarzyna A. Palinska

In this study, 30 strains of filamentous, non-heterocystous cyanobacteria from different habitats and different geographical regions assigned to diverse oscillatorian genera but here collectively referred to as members of the Phormidium group have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, phycoerythrin content, and complementary chromatic adaptation. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The sequences were located on multiple branches of the inferred cyanobacterial 16S rRNA tree. For some, but not all, strains with identical 16S rDNA sequences, a higher level of discrimination was achieved by analyses of the less conserved ITS sequences. As shown for other cyanobacteria, no correlation was found between position of the strains in the phylogenetic tree and their geographic origin. Genetically similar strains originated from distant sites while other strains isolated from the same sampling site were in different phylogenetic clusters. Also the presence of phycoerythrin was not correlated with the strains’ position in the phylogenetic trees. In contrast, there was some correlation among inferred phylogenetic relationship, original environmental habitat, and morphology. Closely related strains came from similar ecosystems and shared the same morphological and ultrastructural features. Nevertheless, structural properties are insufficient in themselves for identification at the genus or species level since some phylogenetically distant members also showed similar morphological traits. Our results reconfirm that the Phormidium group is not phylogenetically coherent and requires revision.


Microbiology | 2002

The signal transducer P(II) and bicarbonate acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation.

Katarzyna A. Palinska; Wassila Laloui; Sylvie Bédu; Susan Loiseaux-de Goër; Anne Marie Castets; Rosmarie Rippka; Nicole Tandeau de Marsac

The amino acid sequence of the signal transducer P(II) (GlnB) of the oceanic photosynthetic prokaryote Prochlorococcus marinus strain PCC 9511 displays a typical cyanobacterial signature and is phylogenetically related to all known cyanobacterial glnB genes, but forms a distinct subclade with two other marine cyanobacteria. P(II) of P. marinus was not phosphorylated under the conditions tested, despite its highly conserved primary amino acid sequence, including the seryl residue at position 49, the site for the phosphorylation of the protein in the cyanobacterium Synechococcus PCC 7942. Moreover, P. marinus lacks nitrate and nitrite reductase activities and does not take up nitrate and nitrite. This strain, however, expresses a low- and a high-affinity transport system for inorganic carbon (C(i); K(m,app) 240 and 4 micro M, respectively), a result consistent with the unphosphorylated form of P(II) acting as a sensor for the control of C(i) acquisition, as proposed for the cyanobacterium Synechocystis PCC 6803. The present data are discussed in relation to the genetic information provided by the P. marinus MED4 genome sequence.


Geobiology | 2010

Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy

Giuliana Panieri; Stefano Lugli; Vinicio Manzi; Marco Roveri; B. C. Schreiber; Katarzyna A. Palinska

Earth scientists have searched for signs of microscopic life in ancient samples of permafrost, ice, deep-sea sediments, amber, salt and chert. Until now, evidence of cyanobacteria has not been reported in any studies of ancient DNA older than a few thousand years. Here, we investigate morphologically, biochemically and genetically primary evaporites deposited in situ during the late Miocene (Messinian) Salinity Crisis from the north-eastern Apennines of Italy. The evaporites contain fossilized bacterial structures having identical morphological forms as modern microbes. We successfully extracted and amplified genetic material belonging to ancient cyanobacteria from gypsum crystals dating back to 5.910-5.816 Ma, when the Mediterranean became a giant hypersaline brine pool. This finding represents the oldest ancient cyanobacterial DNA to date. Our clone library and its phylogenetic comparison with present cyanobacterial populations point to a marine origin for the depositional basin. This investigation opens the possibility of including fossil cyanobacterial DNA into the palaeo-reconstruction of various environments and could also be used to quantify the ecological importance of cyanobacteria through geological time. These genetic markers serve as biosignatures providing important clues about ancient life and begin a new discussion concerning the debate on the origin of late Miocene evaporites in the Mediterranean.


Archives of Microbiology | 2008

Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales).

Katarzyna A. Palinska; Jürgen Marquardt

In this study, ten cyanobacterial strains assigned to the oscillatorian species Phormidium autumnale have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, and pigment content. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The strains were quite homogenous in their morphologic features. Their thylakoids showed a stacked or fascicular pattern. Some, but not all strains contained phycoerythrin. Only one strain (P. autumnale UTCC 476) deviated significantly in its phenotype by lacking a calyptra. In neighbour-joining and maximum Parsimony trees most 16S rRNA sequences were located on a single well-defined branch, which, however, also harboured sequences assigned to other cyanobacterial genera. Two strains (P. autumnale UTCC 476 and P. autumnale UTEX 1580) were found on distant branches. The presence of phycoerythrin was not correlated with the strains’ position in the phylogenetic trees. Our results reconfirm that the morphospecies P. autumnale and the Phormidium group in general are not phylogenetically coherent and require revision. However, as indicated by sequence similarities most of the strains assigned to P. autumnale except P. autumnale UTCC 476 and P. autumnale UTEX 1580 are phylogenetically related and might belong to a single genus.


Geomicrobiology Journal | 2006

Biomicrospheres Generate Ooids in the Laboratory

Ulrike Brehm; Wolfgang E. Krumbein; Katarzyna A. Palinska

Precipitation of calcium carbonate is widespread in microbial communities (biofilms, microbial mats, etc.) and plays an important role in the nucleation and formation of stromatolites, onkolites and oolites. Here we report carbonate precipitation under laboratory conditions in defined spherical microbial communities. These microbial communities represent a symbiosis of cyanobacteria, diatoms and heterotrophic bacteria. Calcification structures always reflect the shape of microbial aggregates resulting from the formation of coalescent grains in chains. Position of the single carbonate crystals follows the spherical arrangement of the filamentous cyanobacteria and results in hollow spheres. The structure of the spherical biofilm determines the form of the carbonate layer. Tiny calcite scleres, deposited by spherical microbial communities in concentric arrangement are observed continuously, documented and described in the laboratory cultures. They may represent the precursors of oolites and are the first reproducible laboratory system generating ooids without a hard nucleus within an otherwise laminated microbial mat community.


FEMS Microbiology Ecology | 2008

Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE)

Raeid M. M. Abed; Katharina Kohls; Raphaela Schoon; Ann Kathrin Scherf; Marion Schacht; Katarzyna A. Palinska; Huda Alhassani; Waleed Hamza; Jürgen Rullkötter; Stjepko Golubic

Variations in morphology, fatty acids, pigments and cyanobacterial community composition were studied in microbial mats across intertidal flats of the arid Arabian Gulf coast. These mats experience combined extreme conditions of salinity, temperature, UV radiation and desiccation depending on their tidal position. Different mat forms were observed depending on the topology of the coast and location. The mats contained 63 fatty acids in different proportions. The increased amounts of unsaturated fatty acids (12-39%) and the trans/cis ratio (0.6-1.6%) of the cyanobacterial fatty acid n-18:1omega9 in the higher tidal mats suggested an adaptation of the mat microorganisms to environmental stress. Chlorophyll a concentrations suggested lower cyanobacterial abundance in the higher than in the lower intertidal mats. Scytonemin concentrations were dependent on the increase in solar irradiation, salinity and desiccation. The mats showed richness in cyanobacterial species, with Microcoleus chthonoplastes and Lyngbya aestuarii morphotypes as the dominant cyanobacteria. Denaturing gradient gel electrophoresis patterns suggested shifts in the cyanobacterial community dependent on drainage efficiency and salinity from lower to higher tidal zones. We conclude that the topology of the coast and the variable extreme environmental conditions across the tidal flat determine the distribution of microbial mats as well as the presence or absence of different microorganisms.


Microbiology | 2000

Prochlorococcus marinus strain PCC 9511, a picoplanktonic cyanobacterium, synthesizes the smallest urease.

Katarzyna A. Palinska; Thomas Jahns; Rosmarie Rippka; Nicole Tandeau de Marsac

The urease from the picoplanktonic oceanic Prochlorococcus marinus sp. strain PCC 9511 was purified 900-fold to a specific activity of 94.6 micromol urea min(-1) (mg protein)(-1) by heat treatment and liquid chromatography methods. The enzyme, with a molecular mass of 168 kDa as determined by gel filtration, is the smallest urease known to date. Three different subunits with apparent molecular masses of 11 kDa (gamma or UreA; predicted molecular mass 11 kDa), 13 kDa (ss or UreB; predicted molecular mass 12 kDa) and 63 kDa (alpha or UreC; predicted molecular mass 62 kDa) were detected in the native enzyme, suggesting a quaternary structure of (alphassgamma)(2). The K:(m) of the purified enzyme was determined as being 0.23 mM urea. The urease activity was inhibited by HgCl(2), acetohydroxamic acid and EDTA but neither by boric acid nor by L-methionine-DL-sulfoximine. Degenerate primers were designed to amplify a conserved region of the ureC gene. The amplification product was then used as a probe to clone a 5.7 kbp fragment of the P. marinus sp. strain PCC 9511 genome. The nucleotide sequence of this DNA fragment revealed two divergently orientated gene clusters, ureDABC and ureEFG, encoding the urease subunits, UreA, UreB and UreC, and the urease accessory molecules UreD, UreE, UreF and UreG. A putative NtcA-binding site was found upstream from ureEFG, indicating that this gene cluster might be under nitrogen control.


Toxicon | 2010

Marine toxic cyanobacteria: diversity, environmental responses and hazards.

Stjepko Golubic; Raeid M. M. Abed; Katarzyna A. Palinska; Serge Pauillac; Mireille Chinain; Dominique Laurent

Toxic cyanobacterial blooms have been a primary concern predominantly in the plankton of freshwater bodies. Recently, however, the toxicity of benthic cyanobacteria is increasingly attracting attention of the scientific community and environmental agencies. The occurrence of toxic strains in benthic cyanobacteria is intimately linked to our understanding of the diversity and ecological responses of these organisms under field conditions. To that effect, we are engaged in combined morphotypic and genotypic characterization (polyphasic) of benthic natural populations of cyanobacteria in tropical lagoons and coral reefs, with the objective to provide a reliable reference for further comparative work. The methods of identification based on phenotypic properties and those based on molecular tools for genotypic identification are correlated. The approach is based on identifying the occurrences of cyanobacterial benthic blooms, tested for purity and analyzed by application of molecular tools. The questions addressed include the distinction between marine and freshwater taxa, between populations in geographically separate regions as well as between their potential vs. expressed toxicity.

Collaboration


Dive into the Katarzyna A. Palinska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrike Brehm

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loïc Charpy

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna A. Gorbushina

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge