Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Bartkowska is active.

Publication


Featured researches published by Katarzyna Bartkowska.


European Journal of Neuroscience | 2008

Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla)

Katarzyna Bartkowska; Rouzanna L. Djavadian; Jan R. E. Taylor; Kris Turlejski

Young shrews of the genus Sorex that are born in early summer reduce their body size before wintering, including a reduction of brain weight of 10–30%. In the spring they mature sexually, double their body weight and regain about half of the loss in brain weight. To investigate the mechanisms of brain weight oscillations we studied the rate of cell death and generation in the brain during the whole life cycle of the common shrew (Sorex araneus) and pygmy shrew (S. minutus). After weaning, shrews generate new brain cells in only two mammalian neurogenic zones and approximately 80% of these develop into neurones. The increase of the shrew brain weight in the spring did not depend on recruitment of new cells. Moreover, adult Sorex shrews did not generate new cells in the dentate gyri. Injections of 5‐HT1A receptor agonists in the adult shrews induced neurogenesis in their dentate gyri, showing the presence of dormant progenitor cells. Generation of new neurones in the subventricular zone of the lateral ventricles and their recruitment to olfactory bulbs continued throughout life. TUNEL labelling showed that the rate of cell death in all brain structures, including the proliferation zones and olfactory bulb, was very low throughout life. We conclude that neither cell death nor recruitment significantly contributes to seasonal oscillations and the net loss of brain weight in the Sorex shrews. With the exception of dentate gyrus and olfactory bulb, cellular populations of brain structures are stable throughout the life cycle of these shrews.


Journal of Neuroimmunology | 2015

The expression of interleukin-6 and its receptor in various brain regions and their roles in exploratory behavior and stress responses.

Agata Aniszewska; N. Chłodzińska; Katarzyna Bartkowska; M.M. Winnicka; K Turlejski; R Djavadian

We examined the involvement of interleukin-6 (IL-6) and its receptor IL-6Rα on behavior and stress responses in mice. In the open field, both wild-type (WT) and IL-6 deficient mice displayed similar levels of locomotor activity; however, IL-6 deficient mice spent more time in the central part of the arena compared to control WT mice. After behavioral testing, mice were subjected to stress and then sacrificed. The levels of IL-6 and its receptor in their brains were determined. Immunohistochemical labeling of brain sections for IL-6 showed a high level of expression in the subventricular zone of the lateral ventricles and in the border zone of the third and fourth ventricles. Interestingly, 95% of the IL-6-expressing cells had an astrocytic phenotype, and the remaining 5% were microglial cells. A low level of IL-6 expression was observed in the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, cerebellum, midbrain and several brainstem structures. The vast majority of IL-6-expressing cells in these structures had a neuronal phenotype. Stress increased the number of IL-6-immunoreactive astrocytes and microglial cells. The levels of the IL-6Rα receptor were increased in the hypothalamus of stressed mice. Therefore, in this study, we describe for the first time the distribution of IL-6 in various types of brain cells and in previously unreported regions, such as the subventricular zone of the lateral ventricle. Moreover, we provide data on regional distribution and expression within specific cell phenotypes. This highly differential expression of IL-6 indicates its specific roles in the regulation of neuronal and astrocytic functions, in addition to the roles of IL-6 and its receptor IL-6Rα in stress responses.


Journal of Chemical Neuroanatomy | 2008

Thalamic nuclei in the opossum Monodelphis domestica

Seweryn Olkowicz; Kris Turlejski; Katarzyna Bartkowska; Ewa Wielkopolska; Rouzanna L. Djavadian

We investigated nuclear divisions of the thalamus in the gray short-tailed opossum (Monodelphis domestica) to gain detailed information for further developmental and comparative studies. Nissl and myelin staining, histochemistry for acetylcholinesterase and immunohistochemistry for calretinin and parvalbumin were performed on parallel series of sections. Many features of the Monodelphis opossum thalamus resemble those in Didelphis and small eutherians showing no particular sensory specializations, particularly in small murid rodents. However, several features of thalamic organization in Monodelphis were distinct from those in rodents. In the opossum the anterior and midline nuclear groups are more clearly separated from adjacent structures than in eutherians. The dorsal lateral geniculate nucleus (LGNd) starts more rostrally and occupies a large part of the lateral wall of the thalamus. As in other marsupials, two cytoarchitectonically different parts, alpha and beta are discernible in the LGNd of the opossum. Each of them may be subdivided into two additional bands in acetylcholinesterase staining, while in murid rodents the LGNd consists of a homogeneous mass of cells. Therefore, differentiation of the LGNd of the Monodelphis opossum is more advanced than in murid rodents. The medial geniculate body consists of three nuclei (medial, dorsal and ventral) that are cytoarchitectonically distinct and stain differentially for parvalbumin. The relatively large size of the MG and LGNd points to specialization of the visual and auditory systems in the Monodelphis opossum. In contrast to rodents, the lateral dorsal and lateral posterior nuclei in the opossum are poorly differentiated cytoarchitectonically.


PLOS ONE | 2017

Stress-Dependent Changes in the CacyBP/SIP Interacting Protein S100A6 in the Mouse Brain

Katarzyna Bartkowska; Izabela Swiatek; Agata Aniszewska; Ewelina Jurewicz; Kris Turlejski; Anna Filipek; Rouzanna L. Djavadian

The CacyBP/SIP target S100A6 is widely present in the nervous system, and its up-regulation is associated with certain neurodegenerative diseases. Here, we examined the involvement of S100A6 protein in stress responses in mice. Using Western blotting, we observed a marked change in brainstem structures, whereby stressed mice showed approximately one-third the protein level produced in the control group. A decreased level of S100A6 protein in stressed animals was also detected in the olfactory bulb and the cerebellum and stress-related structures such as the hippocampus and the hypothalamus. Additionally, using immunohistochemistry, high levels of S100A6 expression were observed in astrocytes localized in the border zones of all brain ventricles, tanycytes of the ventro-lateral walls of the hypothalamus, including the arcuate nucleus (ARH) and low levels of this protein were in neurons of the olfactory bulb, the hippocampus, the thalamus, the cerebral cortex, the brainstem and the cerebellum. Although S100A6-expressing cells in all these brain structures did not change their phenotype in response to stress, the intensity of immunofluorescent labeling in all studied structures was lower in stressed mice than in control animals. For example, in the ARH, where extremely strong immunostaining was observed, the number of immunolabeled fibers was decreased by approximately half in the stressed group compared with the controls. Although these results are descriptive and do not give clue about functional role of S100A6 in stress, they indicate that the level of S100A6 decreases in several brain structures in response to chronic mild stress, suggesting that this protein may modify stress responses.


Developmental Neurobiology | 2014

Distribution and function of TrkB receptors in the developing brain of the opossum Monodelphis domestica

Katarzyna Bartkowska; Agata Aniszewska; Kris Turlejski; R Djavadian

The expression, development pattern, spatiotemporal distribution, and function of TrkB receptors were investigated during the postnatal brain development of the opossum. Full‐length TrkB receptor expression was detectable in the newborn opossum, whereas three different short forms that are expressed in the adult brain were almost undetectable in the newborn opossum brain. The highest level of full‐length TrkB receptor expression was observed at P35, which corresponds to the time of eye opening. We found that in different brain structures, TrkB receptors were localized in various compartments of cells. The hypothalamus was distinguished by the presence of TrkB receptors not only in cell bodies but also in the neuropil. Double immunofluroscent staining for TrkB and a marker for the identification of the cell phenotype in several brain regions such as the olfactory bulb, hippocampus, thalamus, and cerebellum showed that unlike in eutherians, in the opossum, TrkB receptors were predominantly expressed in neurons. A lack of TrkB receptors in glial cells, particularly astrocytes and oligodendrocytes, provides evidence that TrkB receptors can play a functionally different role in marsupials than in eutherians. The effects of TrkB signaling on the development of cortical progenitor cells were examined in vitro using shRNAs. Blockade of the endogenous TrkB receptor expression induced a decrease in the number of progenitor cells proliferation, whereas the number of apoptotic progenitor cells increased. These changes were statistically significant but relatively small. In contrast, TrkB signaling was strongly involved in regulation of the cortical progenitor cell differentiation process.


PLOS ONE | 2013

Expression of TrkC Receptors in the Developing Brain of the Monodelphis opossum and Its Effect on the Development of Cortical Cells

Katarzyna Bartkowska; Monika Gajerska; Kris Turlejski; Rouzanna L. Djavadian

In this study, we investigated the distribution, localization and several various functions of TrkC receptors during development of the Monodelphis opossum brain. Western blotting analysis showed that two different forms of the TrkC receptor, the full-length receptor and one of its truncated forms, are abundantly expressed in the opossum brain. The expression of TrkC receptors was barely detected in the brain of newborn opossums. At postnatal day (P) 3, the expression of full-length TrkC remained at low levels, while moderate expression of the TrkC truncated form was detected. The expression levels of both forms of this protein gradually increased throughout development, peaking at P35. We found that in different neocortical areas located both at the rostral and caudal regions of the cortex, up to 98% of BrdU-labeled cells forming cortical layers (II-VI) had prominently expressed TrkC. To assess which developmental processes of cortical cells are regulated by TrkC receptors, three different shRNAs were constructed. The shRNAs were individually tested in transfected cortical progenitor cells grown on culture plates for 2 days. The effects of the shRNA-TrkC constructs were similar: blockade of TrkC receptors decreased the number of Ki67-positive and apoptotic cells, and it did not change the number of TUJ-positive neurons in vitro. Thus, the lack of TrkC receptors in cultured progenitor cells provided insight on the potential role of these receptors in the regulation of proliferation and cell survival but not in the differentiation of cortical cells.


The International Journal of Biochemistry & Cell Biology | 2018

CacyBP/SIP, a Hsp90 binding chaperone, in cellular stress response

Agnieszka Góral; Katarzyna Bartkowska; R Djavadian; Anna Filipek

CacyBP/SIP interacts with Hsp90 and is able to protect proteins from denaturation and/or aggregation induced by elevated temperature. In this work we studied the influence of different stress factors on CacyBP/SIP level in HEp-2 cells. We have found that H2O2 and radicicol treatment resulted in a significant increase (up to 40%) in the CacyBP/SIP level. We have also found that HEp-2 cells overexpressing CacyBP/SIP were more resistant to stress-induced death. Further studies have revealed that the Hsf1 transcription factor binds to the CacyBP/SIP gene promoter and up-regulates CacyBP/SIP expression under stress conditions. To check whether the CacyBP/SIP protein might play a role in stress responses in vivo, we analyzed its level in selected brain structures of control and stressed mice. We have found that the level of the CacyBP/SIP protein was higher in the thalamus/hypothalamus, hippocampus and brainstem of stressed mice. Thus, the presented results clearly indicate that CacyBP/SIP is involved in cellular stress response.


Reviews in The Neurosciences | 2018

Roles of the exon junction complex components in the central nervous system: a mini review

Katarzyna Bartkowska; Beata Tepper; Kris Turlejski; R Djavadian

Abstract The exon junction complex (EJC) consists of four core proteins: Magoh, RNA-binding motif 8A (Rbm8a, also known as Y14), eukaryotic initiation factor 4A3 (eIF4A3, also known as DDX48), and metastatic lymph node 51 (MLN51, also known as Casc3 or Barentsz), which are involved in the regulation of many processes occurring between gene transcription and protein translation. Its main role is to assemble into spliceosomes at the exon-exon junction of mRNA during splicing. It is, therefore, a range of functions concerning post-splicing events such as mRNA translocation, translation, and nonsense-mediated mRNA decay (NMD). Apart from this, proteins of the EJC control the splicing of specific pre-mRNAs, for example, splicing of the mapk transcript. Recent studies support essential functions of EJC proteins in oocytes and, after fertilization, in all stages of zygote development, as well as the growth of the embryo, including the development of the nervous system. During the development of the central nervous system (CNS), the EJC controls mitosis, regulating both symmetric and asymmetric cell divisions. Reduced levels of EJC components cause microcephaly. In the adult brain, Y14 and eIF4A3 appear to be involved in synaptic plasticity and in learning and memory. In this review, we focus on the involvement of EJC components in brain development and its functioning under normal conditions.


Cerebral Cortex | 2018

Inhibition of TrkB- and TrkC-Signaling Pathways Affects Neurogenesis in the Opossum Developing Neocortex

Katarzyna Bartkowska; B Tepper; A Gawda; M Jarosik; P Sobolewska; K Turlejski; R Djavadian

We have previously reported that the blockage of TrkB and TrkC signaling in primary culture of opossum neocortical cells affects neurogenesis that involves a range of processes including cell proliferation, differentiation, and survival. Here, we studied whether TrkB and TrkC activity specifically affects various types of progenitor cell populations during neocortex formation in the Monodelphis opossum in vivo. We found that the inhibition of TrkB and TrkC activities affects the same proliferative cellular phenotype, but TrkC causes more pronounced changes in the rate of cell divisions. Additionally, inhibition of TrkB and TrkC does not affect apoptosis in vivo, which was found in cell culture experiments. The lack of TrkB and TrkC receptor activity caused the arrest of newly generated neurons; therefore, they could not penetrate the subplate zone. We suggest that at this time point in development, migration consists of 2 steps. During the initial step, neurons migrate and reach the base of the subplate, whereas during the next step the migration of neurons to their final position is regulated by TrkB or TrkC signaling.


Neuroscience Letters | 2004

Apparent scarcity of glial fibrillary acidic protein expression in the brain of the pygmy shrew Sorex minutus as revealed by immunocytochemistry

Seweryn Olkowicz; Katarzyna Bartkowska; Leszek Rychlik; Kris Turlejski

We examined astroglial cells in the brain of the pygmy shrew Sorex minutus (Insectivora). For that purpose we labeled glial fibrillary acidic protein (GFAP) immunohistochemically in brain sections with a polyclonal antibody. Antigen retrieval experiments were performed to counteract formaldehyde fixation masking of GFAP epitopes. Our results showed remarkable paucity of GFAP-immunoreactive cells and fibers in the cerebral cortex and nuclei, as well as in the majority of the diencephalic and mesencephalic structures. In the forebrain, significant numbers of GFAP-containing astrocytes were found only in the ependyma and subventricular zones, superficial part of layer I of the cerebral cortex, and the majority of white matter structures. In the diencephalon, habenular nuclei were rich in GFAP-immunopositive astrocytes and labeled radial fibers were extended between median eminence and the third ventricle. A considerably higher density of labeled astrocytes was detected in the caudal brainstem and cerebellum. In contrast, in the mouse brain, immunoreactive astrocytes were present in large quantities in various structures. Staining of sections of the shrew brain against glutamine synthetase revealed abundance of immunofluorescent astrocytes in many areas, especially in the shrew cerebral cortex. It seems probable that in the shrew brain only a limited fraction of astroglia expresses GFAP, while other astroglial cells can be detected with different markers. It is possible that the rodent type of astroglial GFAP expression might not be common to insectivores and probably to some other mammalian orders.

Collaboration


Dive into the Katarzyna Bartkowska's collaboration.

Top Co-Authors

Avatar

Kris Turlejski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

R Djavadian

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

K Turlejski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Rouzanna L. Djavadian

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Agata Aniszewska

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Anna Filipek

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Seweryn Olkowicz

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

A Gawda

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Góral

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

B Tepper

Nencki Institute of Experimental Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge