Katarzyna Dobruch-Sobczak
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katarzyna Dobruch-Sobczak.
Journal of Ultrasonography | 2016
Andrzej Nowicki; Katarzyna Dobruch-Sobczak
For centuries tissue palpation has been an important diagnostic tool. During palpation, tumors are felt as tissues harder than the surrounding tissues. The significance of palpation is related to the relationship between mechanical properties of different tissue lesions. The assessment of tissue stiffness through palpation is based on the fact that mechanical properties of tissues are changing as a result of various diseases. A higher tissue stiffness translates into a higher elasticity modulus. In the 90s, ultrasonography was extended by the option of examining the stiffness of tissue by estimating the difference in backscattering of ultrasound in compressed and non-compressed tissue. This modality is referred to as the static, compression elastography and is based on tracking the deformation of tissue subjected to the slowly varying compression through the recording of the backscattered echoes. The displacement is estimated using the methods of cross-correlation between consecutive ultrasonic lines of examined tissue, so calculating the degree of similarity of ultrasonic echoes acquired from tissue before and after the compression was applied. The next step in the development of ultrasound palpation was to apply the local remote tissue compression by using the acoustic radiation force generated through the special beam forming of the ultrasonic beam probing the tissue. The acoustic radiation force causes a slight deformation the tissue thereby forming a shear wave propagating in the tissue at different speeds dependent on the stiffness of the tissue. Shear wave elastography, carries great hopes in the field of quantitative imaging of tissue lesions. This article describes the physical basis of both elastographic methods: compression elastography and shear wave elastography.
Clinical Radiology | 2017
Katarzyna Dobruch-Sobczak; K. Roszkowska-Purska; Andrzej Nowicki; Wiesław Jakubowski
AIM To develop a method combining the statistics of the ultrasound backscatter and the Breast Imaging-Reporting and Data System (BI-RADS) classification to enhance the differentiation of breast tumours. MATERIALS AND METHODS The Nakagami shape parameter m was used to characterise the scatter properties of breast tumours. Raw data from the radiofrequency (RF) echo-signal and B-mode images from 107 (32 malignant and 75 benign) lesions and their surrounding tissue were recorded. Three different characteristic values of the shape parameters of m (maximum [mLmax], minimum [mLmin] and average [mLavg]) and differences between m parameters (Δmmax, Δmmin, Δmavg) of the lesions and their surrounding tissues were assessed. A lesion with a BI-RADS score of 3 was considered benign, while a lesion with a score of 4 was considered malignant (a cut-off of BI-RADS 3/4 was set for all patients). RESULTS The area under the receiver operating characteristic (ROC) curve (AUC) was equal to 0.966 for BI-RADS, with 100% sensitivity and 54.67% specificity. All malignant lesions were diagnosed correctly, whereas 34 benign lesions were biopsied unnecessarily. In assessing the Nakagami statistics, the sum of the sensitivity and specificity was the best for mLavg (62.5% and 93.33%, respectively). Only four of 20 lesions were found over the cut-off value in BI-RADS of 4a. When comparing the differences in m parameters, Δmavg had the highest sensitivity of 90% (only three of 32 lesions were false negative). These three lesions were classified as BI-RADS category 4c. The combined use of B-mode and mLmin parameter improve the AUC up to 0.978 (p=0.088), compared to BI-RADS alone. CONCLUSION The combination of the parametric imaging and the BI-RADS assessment does not significantly improve the differentiation of breast lesions, but it has the potential to better identify the group of patients with mainly benign lesions that have a low level of suspicion for malignancy with a BI-RADS score of 4a.
Journal of Ultrasonography | 2016
Michał Nieciecki; Katarzyna Dobruch-Sobczak; Paweł Wareluk; Anna Gumińska; Ewa J. Białek; Marek Cacko; Leszek Królicki
Breast cancer is the most common malignancy and the leading cause of death due to cancer in European women. Mammography screening programs aimed to increase the detection of early cancer stages were implemented in numerous European countries. Recent data show a decrease in mortality due to breast cancer in many countries, particularly among young women. At the same time, the number of sentinel node biopsy procedures and breast-conserving surgeries has increased. Intraoperative sentinel lymph node biopsy preceded by lymphoscintigraphy is used in breast cancer patients with no clinical signs of lymph node metastasis. Due to the limited sensitivity and specificity of physical examination in detecting metastatic lesions, developing an appropriate diagnostic algorithm for the preoperative assessment of axillary lymph nodes seems to be a challenge. The importance of ultrasound in patient qualification for sentinel lymph-node biopsy has been discussed in a number of works. Furthermore, different lymphoscintigraphy protocols have been compared in the literature. The usefulness of novel radiopharmaceuticals as well as the methods of image acquisition in sentinel lymph node diagnostics have also been assessed. The aim of this article is to present, basing on current guidelines, literature data as well as our own experience, the diagnostic possibilities of axillary lymph node ultrasound in patient qualification for an appropriate treatment as well as the role of lymphoscintigraphy in sentinel lymph node biopsy.
Journal of Ultrasonography | 2014
Katarzyna Dobruch-Sobczak; Maciej Jędrzejowski; Wiesław Jakubowski; Anna Trzebińska
Ultrasound examination of the thyroid gland permits to evaluate its size, echogenicity, margins, and stroma. An abnormal ultrasound image of the thyroid, accompanied by other diagnostic investigations, facilitates therapeutic decision-making. The ultrasound image of a normal thyroid gland does not change substantially with patients age. Nevertheless, erroneous impressions in thyroid imaging reports are sometimes encountered. These are due to diagnostic pitfalls which cannot be prevented by either the continuing development of the imaging equipment, or the growing experience and skill of the practitioners. Our article discusses the most common mistakes encountered in US diagnostics of the thyroid, the elimination of which should improve the quality of both the ultrasound examination itself and its interpretation. We have outlined errors resulting from a faulty examination technique, the similarity of the neighboring anatomical structures, and anomalies present in the proximity of the thyroid gland. We have also pointed out the reasons for inaccurate assessment of a thyroid lesion image, such as having no access to clinical data or not taking them into account, as well as faulty qualification for a fine needle aspiration biopsy. We have presented guidelines aimed at limiting the number of misdiagnoses in thyroid diseases, and provided sonograms exemplifying diagnostic mistakes.
Journal of Ultrasonography | 2014
Anna Trzebińska; Katarzyna Dobruch-Sobczak; Wiesław Jakubowski; Maciej Jędrzejowski
Ultrasonography is a primary imaging technique in patients with suspected thyroid disease. It allows to assess the location, size and echostructures of the thyroid gland as well as detect focal lesions, along with indication of their size, echogenicity, echostructure and vascularity. Based on these features, ultrasound examination allows to predict abnormal focal lesions for biopsy and monitor the biopsy needle track. This paper presents the standards of thyroid ultrasound examination regarding ultrasound apparatus technical requirements, scanning techniques, readings, measurements, and the description of the examination. It discusses the ultrasound features of increased malignancy risk in focal lesions (nodules) found in the thyroid gland. It presents indications for fine needle aspiration biopsy of the thyroid gland for the visibility of single nodules (focal lesions) and numerous lesions as well as discusses contraindications for thyroid biopsy. It describes the biopsy technique, possible complications and rules for post-biopsy monitoring of benign lesions. The paper is an update of the Standards of the Polish Ultrasound Society issued in 2011. It has been prepared on the basis of current literature, taking into account the information contained in the following publications: Thyroid ultrasound examination and Recommendations of the Polish Ultrasound Society for the performance of the FNAB of the thyroid.
internaltional ultrasonics symposium | 2015
Michał Byra; Andrzej Nowicki; Jerzy Litniewski; Katarzyna Dobruch-Sobczak
Nakagami distribution is used to model the statistical properties of backscattered echoes in tissue. The proper estimate requires the compensation of attenuation along each scanning line. Attenuation of the wave results in decreasing of the envelope mean intensity with depth what modifies the Nakagami scale parameter. This phenomenon violates the assumption that envelope samples within region of interest are identically distributed and disrupts estimation. Here, we investigate the influence of wave attenuation on Nakagami shape parameter estimators for various scattering scenarios, attenuation coefficients and region of interest size. Three methods are proposed to solve this issue. Scans of a thyroid and of a breast lesion are analyzed. It was found that proposed methods improved the estimation, especially when larger regions were used to collect envelope samples.
Journal of Ultrasonography | 2015
Rafal Z. Slapa; Wiesław Jakubowski; Katarzyna Dobruch-Sobczak; Anna Kasperlik-Załuska
Adrenal glands are paired endocrine glands located over the upper renal poles. Adrenal pathologies have various clinical presentations. They can coexist with the hyperfunction of individual cortical zones or the medulla, insufficiency of the adrenal cortex or retained normal hormonal function. The most common adrenal masses are tumors incidentally detected in imaging examinations (ultrasound, tomography, magnetic resonance imaging), referred to as incidentalomas. They include a range of histopathological entities but cortical adenomas without hormonal hyperfunction are the most common. Each abdominal ultrasound scan of a child or adult should include the assessment of the suprarenal areas. If a previously non-reported, incidental solid focal lesion exceeding 1 cm (incidentaloma) is detected in the suprarenal area, computed tomography or magnetic resonance imaging should be conducted to confirm its presence and for differentiation and the tumor functional status should be determined. Ultrasound imaging is also used to monitor adrenal incidentaloma that is not eligible for a surgery. The paper presents recommendations concerning the performance and assessment of ultrasound examinations of the adrenal glands and their pathological lesions. The article includes new ultrasound techniques, such as tissue harmonic imaging, spatial compound imaging, three-dimensional ultrasound, elastography, contrast-enhanced ultrasound and parametric imaging. The guidelines presented above are consistent with the recommendations of the Polish Ultrasound Society.
Journal of Ultrasonography | 2012
Wiesław Jakubowski; Katarzyna Dobruch-Sobczak; Bartosz Migda
Sonomammography is often the first additional examination performed in the diagnostics of breast diseases. The development of ultrasound imaging techniques, particularly the introduction of high frequency transducers, matrix transducers, harmonic imaging and finally, elastography, influenced the improvement of breast disease diagnostics. Nevertheless, as in each imaging method, there are errors and mistakes resulting from the technical limitations of the method, breast anatomy (fibrous remodeling), insufficient sensitivity and, in particular, specificity. Errors in breast ultrasound diagnostics can be divided into impossible to be avoided and potentially possible to be reduced. In this article the most frequently made errors in ultrasound have been presented, including the ones caused by the presence of artifacts resulting from volumetric averaging in the near and far field, artifacts in cysts or in dilated lactiferous ducts (reverberations, comet tail artifacts, lateral beam artifacts), improper setting of general enhancement or time gain curve or range. Errors dependent on the examiner, resulting in the wrong BIRADS-usg classification, are divided into negative and positive errors. The sources of these errors have been listed. The methods of minimization of the number of errors made have been discussed, including the ones related to the appropriate examination technique, taking into account data from case history and the use of the greatest possible number of additional options such as: harmonic imaging, color and power Doppler and elastography. In the article examples of errors resulting from the technical conditions of the method have been presented, and those dependent on the examiner which are related to the great diversity and variation of ultrasound images of pathological breast lesions.
internaltional ultrasonics symposium | 2015
Andrzej Nowicki; Jerzy Litniewski; Michał Byra; Barbara Gambin; Eleonora Kruglenko; Katarzyna Dobruch-Sobczak
The aim of the study was finding the relationship between BIRADS classification combined with envelope K and Nakagami statistics of the echoes backscattered in the breast tissue in vivo and the histological data. 107 breast lesions were examined. Both, the RF echo-signal and B-mode images from the lesions and surrounding tissue were recorded. The analysis method was based on the combining data from BIRADS classifications and both distributions parameters. 107 breasts lesions - 32 malignant and 75 benign - were examined. When only BIRADS classification was used all malignant lesions were diagnosed correctly, however 34 benign lesions were sent for the biopsy unnecessarily. For K distribution the sensitivity and specificity were 78.13%, and 86.67% while for Nakagami statistics the sensitivity and specificity were 62.50% and 93.33%, respectively. Combined K and BIRADS resulted in sensitivity of 96.67% and specificity 60%. Combined BIRADS (3/4a cut-off) plus Nakagami statistics showed 100% of sensitivity with specificity equal 57.33%, decreasing the number of lesions which were biopsied from 34 to 28.
Ultrasound in Medicine and Biology | 2015
Katarzyna Dobruch-Sobczak; Andrzej Nowicki
Our goal in this study was to evaluate the relevance of shear wave sonoelastography (SWE) in the differential diagnosis of masses in the breast with respect to ultrasound (US). US and SWE were performed (Aixplorer System, SuperSonic Imagine, Aix en Provence, France) in 76 women (aged 24 to 85) with 84 lesions (43 malignant, 41 benign). The study included BI-RADS-US (Breast Imaging Reporting and Data System for Ultrsound) category 3-5 lesions. In elastograms, the following values were calculated: mean elasticity in lesions (E(av.l)) and in fat tissue (E(av.f.)) and maximal (E(max.adj.)) and mean (E(av.adj.)) elasticity in lesions and adjacent tissues. The sensitivity and specificity of the BI-RADS category 4a/4b cutoff value were 97.7% and 90.2%. For an E(av.adj.) of 68.5 kPa, the cutoff sensitivity was 86.1% and the specificity was 87.8%, and for an E(max.adj.) of 124.1 kPa, 74.4% and 92.7%, respectively. For BI-RADS-US category 3 lesions, E(av.l), E(max.adj.) and E(av.adj.) were below cutoff levels. On the basis of our findings, E(av.adj.) had lower sensitivity and specificity compared with US. Emax.adj. improved the specificity of breast US with loss of sensitivity.