Katarzyna Grubel
Utah State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katarzyna Grubel.
Journal of the American Chemical Society | 2014
Katarzyna Grubel; William W. Brennessel; Brandon Q. Mercado; Patrick L. Holland
Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N–N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N–N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.
Inorganic Chemistry | 2010
Katarzyna Grubel; Katarzyna Rudzka; Atta M. Arif; Katie L. Klotz; Jason A. Halfen; Lisa M. Berreau
A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2) (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)(2).2H(2)O]. An Fe(II) complex of 3-Hfl, [(6-Ph(2)TPA)Fe(3-Hfl)]ClO(4) (8), was isolated and characterized by elemental analysis, FTIR, UV-vis, (1)H NMR, cyclic voltammetry, and a magnetic moment measurement. This complex reacts with O(2) to produce the diiron(III) mu-oxo compound [(6-Ph(2)TPAFe(3Hfl))(2)(mu-O)](ClO(4))(2) (6).
Inorganic Chemistry | 2011
Lisa M. Berreau; Tomasz Borowski; Katarzyna Grubel; Caleb J. Allpress; Jeffrey P. Wikstrom; Meaghan E. Germain; Elena V. Rybak-Akimova; David L. Tierney
The mononuclear nickel(II) enolate complex [(6-Ph(2)TPA)Ni(PhC(O)C(OH)C(O)Ph]ClO(4) (I) was the first reactive model complex for the enzyme/substrate (ES) adduct in nickel(II)-containing acireductone dioxygenases (ARDs) to be reported. In this contribution, the mechanism of its O(2)-dependent aliphatic carbon-carbon bond cleavage reactivity was further investigated. Stopped-flow kinetic studies revealed that the reaction of I with O(2) is second-order overall and is ∼80 times slower at 25 °C than the reaction involving the enolate salt [Me(4)N][PhC(O)C(OH)C(O)Ph]. Computational studies of the reaction of the anion [PhC(O)C(OH)C(O)Ph](-) with O(2) support a hydroperoxide mechanism wherein the first step is a redox process that results in the formation of 1,3-diphenylpropanetrione and HOO(-). Independent experiments indicate that the reaction between 1,3-diphenylpropanetrione and HOO(-) results in oxidative aliphatic carbon-carbon bond cleavage and the formation of benzoic acid, benzoate, and CO:CO(2) (∼12:1). Experiments in the presence of a nickel(II) complex gave a similar product distribution, albeit benzil [PhC(O)C(O)Ph] is also formed, and the CO:CO(2) ratio is ∼1.5:1. The results for the nickel(II)-containing reaction match those found for the reaction of I with O(2) and provide support for a trione/HOO(-) pathway for aliphatic carbon-carbon bond cleavage. Overall, I is a reasonable structural model for the ES adduct formed in the active site of Ni(II)ARD. However, the presence of phenyl appendages at both C(1) and C(3) in the [PhC(O)C(OH)C(O)Ph](-) anion results in a reaction pathway for O(2)-dependent aliphatic carbon-carbon bond cleavage (via a trione intermediate) that differs from that accessible to C(1)-H acireductone species. This study, as the first detailed investigation of the O(2) reactivity of a nickel(II) enolate complex of relevance to Ni(II)ARD, provides insight toward understanding the chemical factors involved in the O(2) reactivity of metal acireductone species.
Journal of the American Chemical Society | 2013
Christopher J. Pollock; Katarzyna Grubel; Patrick L. Holland; Serena DeBeer
This work establishes the ability of valence-to-core X-ray emission spectroscopy (XES) to serve as a direct probe of N2 bond activation. A systematic series of iron-N2 complexes has been experimentally investigated and the energy of a valence-to-core XES peak was correlated with N-N bond length and stretching frequency. Computations demonstrate that, in a simple one-electron picture, this peak arises from the N2 2s2s σ* orbital, which becomes less antibonding as the N-N bond is weakened and broken. Changes as small as 0.02 Å in the N-N bond length may be distinguished using this approach. The results thus establish valence-to-core XES as an effective probe of small molecule activation, which should have broad applicability in transition-metal mediated catalysis.
Angewandte Chemie | 2012
Katarzyna Grubel; Patrick L. Holland
One S less: recent crystallographic studies have revealed a new, oxygen-tolerant kind of iron-sulfide cluster [4Fe-3S], which contains only three rather than four sulfur atoms in its cage (see picture; yellow=S, red=Fe, blue=N, green=cysteine). It is proposed that the clusters ability to transfer multiple electrons increases the oxygen tolerance by enabling the enzyme to reduce O(2) rapidly, converting the dioxygen into harmless water before it can damage the protein.
Inorganic Chemistry | 2016
Sean F. McWilliams; Kenton R. Rodgers; Gudrun S. Lukat-Rodgers; Brandon Q. Mercado; Katarzyna Grubel; Patrick L. Holland
Alkali metal cations can interact with Fe–N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber–Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal–dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na+ to K+, Rb+, and Cs+. The FeNNFe cores have similar Fe–N and N–N distances and N–N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.
Inorganic Chemistry | 2010
Katarzyna Grubel; Amy L. Fuller; Bonnie M. Chambers; Atta M. Arif; Lisa M. Berreau
A mononuclear Ni(II) complex having an acireductone type ligand, and supported by the bnpapa (N,N-bis((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) ligand, [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (14), has been prepared and characterized by elemental analysis, (1)H NMR, FTIR, and UV-vis. To gain insight into the (1)H NMR features of 14, the air stable analogue complexes [(bnpapa)Ni(CH(3)C(O)CHC(O)CH(3))]ClO(4) (16) and [(bnpapa)Ni(ONHC(O)CH(3))]ClO(4) (17) were prepared and characterized by X-ray crystallography, (1)H NMR, FTIR, UV-vis, mass spectrometry, and solution conductivity measurements. Compounds 16 and 17 are 1:1 electrolyte species in CH(3)CN. (1)H and (2)H NMR studies of 14, 16, and 17 and deuterated analogues revealed that the complexes having six-membered chelate rings for the exogenous ligand (14 and 16) do not have a plane of symmetry within the solvated cation and thus exhibit more complicated (1)H NMR spectra. Compound 17, as well as other simple Ni(II) complexes of the bnpapa ligand (e.g., [(bnpapa)Ni(ClO(4))(CH(3)CN)]ClO(4) (18) and [(bnpapaNi)(2)(mu-Cl)(2)](ClO(4))(2) (19)), exhibit (1)H NMR spectra consistent with the presence of a plane of symmetry within the cation. Treatment of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (14) with O(2) results in aliphatic carbon-carbon bond cleavage within the acireductone-type ligand and the formation of [(bnpapa)Ni(O(2)CPh)]ClO(4) (9), benzoic acid, benzil, and CO. Use of (18)O(2) in the reaction gives high levels of incorporation (>80%) of one labeled oxygen atom into 9 and benzoic acid. The product mixture and level of (18)O incorporation in this reaction is different than that exhibited by the analogue supported the hydrophobic 6-Ph(2)TPA ligand, [(6-Ph(2)TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (2). We propose that this difference is due to variations in the reactivity of bnpapa- and 6-Ph(2)TPA-ligated Ni(II) complexes with triketone and/or peroxide species produced in the reaction pathway.
Inorganic Chemistry | 2010
Katarzyna Rudzka; Katarzyna Grubel; Atta M. Arif; Lisa M. Berreau
A nickel(II) enediolate cluster (2) forms upon treatment of [(6-Ph(2)TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (1) with Me(4)NOH x 5 H(2)O in CH(3)CN. Crystallographic studies of 2 revealed a hexanuclear structure of S(6) symmetry with a formula of {[Ni(PhC(O)C(O)C(O)Ph)(CH(3)OH)] x 1.33 CH(3)OH}(6). Because isolation of bulk amounts of 2 from the reaction involving 1 proved impossible, a solvation analogue of 2 (labeled 5) was generated from admixture of Ni(ClO(4))(2) x 6 H(2)O, 2-hydroxy-1,3-diphenylpropane-1,3-dione, and Me(4)NOH x 5 H(2)O in CH(3)OH/CH(3)CN. Complex 5 is formulated as {[Ni(PhC(O)C(O)C(O)Ph)(H(2)O)] x H(2)O x 0.25 CH(3)CN}(6) based on elemental analysis, a molecular weight determination, UV-vis, and a magnetic moment measurement. Treatment of 5 with O(2) and 6-Ph(2)TPA (6 equiv) results in the formation of CO and [(6-Ph(2)TPA)Ni(O(2)CPh)(2)(H(2)O)] (3), the latter of which was isolated in 69% yield. The level of (18)O incorporation in this reaction matches that for a reaction wherein 2 is generated from 1. These results provide evidence that a nickel(II) enediolate cluster is the O(2) reactive species in a previously reported model reaction for nickel(II)-containing acireductone dioxygenase.
Inorganic Chemistry | 2014
Timothy E. Machonkin; Monica D. Boshart; Jeremy A. Schofield; Meghan M. Rodriguez; Katarzyna Grubel; Dalia Rokhsana; William W. Brennessel; Patrick L. Holland
Metal complexes incorporating the tris(3,5-diphenylpyrazolyl)borate ligand (Tp(Ph2)) and ortho-dihalophenolates were synthesized and characterized in order to explore metal-halogen secondary bonding in biorelevant model complexes. The complexes Tp(Ph2)ML were synthesized and structurally characterized, where M was Fe(II), Co(II), or Ni(II) and L was either 2,6-dichloro- or 2,6-dibromophenolate. All six complexes exhibited metal-halogen secondary bonds in the solid state, with distances ranging from 2.56 Å for the Tp(Ph2)Ni(2,6-dichlorophenolate) complex to 2.88 Å for the Tp(Ph2)Fe(2,6-dibromophenolate) complex. Variable temperature NMR spectra of the Tp(Ph2)Co(2,6-dichlorophenolate) and Tp(Ph2)Ni(2,6-dichlorophenolate) complexes showed that rotation of the phenolate, which requires loss of the secondary bond, has an activation barrier of ~30 and ~37 kJ/mol, respectively. Density functional theory calculations support the presence of a barrier for disruption of the metal-halogen interaction during rotation of the phenolate. On the other hand, calculations using the spectroscopically calibrated angular overlap method suggest essentially no contribution of the halogen to the ligand-field splitting. Overall, these results provide the first quantitative measure of the strength of a metal-halogen secondary bond and demonstrate that it is a weak noncovalent interaction comparable in strength to a hydrogen bond. These results provide insight into the origin of the specificity of the enzyme 2,6-dichlorohydroquinone 1,2-dioxygenase (PcpA), which is specific for ortho-dihalohydroquinone substrates and phenol inhibitors.
Dalton Transactions | 2011
Katarzyna Grubel; Gajendrasingh K. Ingle; Amy L. Fuller; Atta M. Arif; Lisa M. Berreau
Reaction conditions were evaluated for the preparation of [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (3) and [(6-Ph(2)TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO(4) (7), two complexes of structural relevance to the enzyme/substrate (ES) adduct in Ni(II)- and Co(II)-containing forms of acireductone dioxygenase. The presence of water in reactions directed at the preparation of 3 and 7 was found to result in isomerization of the enolate precursor 2-hydroxy-1,3-diphenylpropane-1,3-dione to give the ester 2-oxo-2-phenylethylbenzoate. Performing synthetic procedures under dryer conditions reduced the amount of ester production and enabled the isolation of 3 in high yield. This complex was comprehensively characterized, including by X-ray crystallography. Using similar conditions for the 6-Ph(2)TPACo-containing system, the amount of ester generated was only modestly affected, but the formation of a benzoate complex ([(6-Ph(2)TPA)Co(O(2)CPh)]ClO(4), 10) resulting from ester hydrolysis was prevented. The best preparation of 7 was found to involve dry conditions and short reaction times. The approach outlined herein toward determining appropriate reaction conditions for the preparation of 3 and 7 involved the preparation and characterization of several air-stable (6-PhTPA)Ni- and (6-Ph(2)TPA)Co-containing analog complexes having enolate, solvent, and benzoate ligands. These complexes were used as paramagnetic (1)H NMR standards for evaluation of reaction mixtures containing 3 and 7.