Katarzyna Hrynkiewicz
Nicolaus Copernicus University in Toruń
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katarzyna Hrynkiewicz.
Electrophoresis | 2010
Ewa Kłodzińska; Michał Szumski; Ewelina Dziubakiewicz; Katarzyna Hrynkiewicz; Ewa Skwarek; W. Janusz; Bogusław Buszewski
The aggregation and/or adhesion of bacterial cells is a serious disadvantage of electrophoretic separations. In this study, physicochemical surface characteristics of bacteria were measured to establish their role in bacterial adhesion and aggregation on the basis of electrophoretic behavior of different clinical strains of Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli bacteria. The number and the shape of peaks obtained on the electropherograms were connected with the zeta potential measurements and in‐line microscope observation using specially designed CE fluorescence stereomicroscope setup. These results suggest that the lower the zeta potential, the higher the number of smaller peaks detected. The direct microscopic observation of electrophoretic movement proved the presence of many small aggregates originating from individual or clustered bacterial cells. On the other hand, lower zeta potential was also observed for dead bacterial cells, which suggested that some of the peaks can be attributed to viable cells while the other to the dead ones.
Biomedical Chromatography | 2011
Agnieszka Ulanowska; Tomasz Kowalkowski; Katarzyna Hrynkiewicz; Marek Jackowski; Bogusław Buszewski
Helicobacter pylori living in the human stomach release volatile organic compounds (VOCs) that can be detected in expired air. The aim of the study was the application of breath analysis for bacteria detection. It was accomplished by determination of VOCs characteristic for patients with H. pylori and the analysis of gases released by bacteria in suspension. Solid-phase microextraction was applied as a selective technique for preconcentration and isolation of analytes. Gas chromatography coupled with mass spectrometry was used for the separation and identification of volatile analytes in breath samples and bacterial headspace. For data calculation and processing, discriminant and factor analyses were used. Endogenous substances such as isobutane, 2-butanone and ethyl acetate were detected in the breath of persons with H. pylori in the stomach and in the gaseous mixture released by the bacteria strain but they were not identified in the breath of healthy volunteers. The canonical analysis of discrimination functions showed a strong difference between the three examined groups. Knowledge of substances emitted by H. pylori with the application of an optimized breath analysis method might become a very useful tool for noninvasive detection of this bacterium.
International Journal of Phytoremediation | 2009
Dana Zimmer; Christel Baum; Peter Leinweber; Katarzyna Hrynkiewicz; Ralph Meissner
In order to enhance phytoremediation efficiency, we investigated the effects of dual inoculation with ectomycorrhizal fungi and the ectomycorrhiza associated bacteria Micrococcus luteus and Sphingomonas sp. on the growth and metal accumulation of willows (Salix viminalis x caprea) on contaminated soil. The bacterial strains were previously collected from sporocarps of ectomycorrhizal fungi. The bacteria increased plant growth and the mycorrhizal dependency of willows colonized with the ectomycorrhizal fungus Hebeloma crustuliniforme. The total cadmium (Cd) and zinc (Zn) accumulation in the shoot biomass was increased after inoculation with the fungal strain Hebeloma crustuliniforme in combination with Micrococcus luteus up to 53% and in combination with Sphingomonas sp. up to 62%, respectively. The dual inoculation in combination with Laccaria laccata did not increase the accumulation of Cd and Zn in the willows. We conclude that associated bacteria can enhance the ectomyorrhiza formation and growth of willows and, thereby, the Cd and Zn accumulation in the plant biomass. The results suggest that bacterial support of root growth promoting ectomycorrhizal fungi may be a promising approach to improve the remediation of metal-contaminated soils by using willows.
Archive | 2012
Katarzyna Hrynkiewicz; Christel Baum
The significance of rhizosphere microorganisms, especially mycorrhizal fungi and bacteria, in polluted soils can be enormous, since they are able to increase the tolerance of plants against abiotic stress, stimulate plant growth and contribute in this way to an accelerated remediation of disturbed soils. The majority of known higher plant species is associated with mycorrhizal fungi, which can increase the tolerance of plants against abiotic stress, e.g. by an improved nutrient supply or by detoxification of pollutants. Rhizosphere bacteria can strongly promote the growth of plants solely and in interaction with mycorrhizal fungi. They can contribute to the mobilization of nutrients and degradation of organic pollutants. Co-inoculation of plants with mycorrhizal fungi and rhizosphere bacteria is a very promising biotechnological approach for the promotion of plant growth and soil remediation. The application of microbial inoculum for the remediation of disturbed soils was tested with several plant species, e.g., fast growing tree species, but mostly on a small scale. Main reasons for the lack of field applications in a larger scale are the lack of suitable time- and cost-effective strategies for a site-specific selection, preparation and application of microbial inoculum and the strong restriction of information on on-site efficiency of inoculated microbial strains.
Water Air and Soil Pollution | 2012
Katarzyna Hrynkiewicz; Grazyna Dabrowska; Christel Baum; Katarzyna Niedojadło; Peter Leinweber
Single and joint ectomycorrhizal (+ Hebeloma mesophaeum) and bacterial (+ Bacillus cereus) inoculations of willows (Salix viminalis) were investigated for their potential and mode of action in the promotion of cadmium (Cd) and zinc (Zn) phytoextraction. Dual fungal and bacterial inoculations promoted the biomass production of willows in contaminated soil. Single inoculations either had no effect on the plant growth or inhibited it. All inoculated willows showed increased concentrations of nutritional elements (N, P, K and Zn) and decreased concentrations of Cd in the shoots. The lowest biomass production and concentration of Cd in the willows (+ B. cereus) were combined with the strongest expression of metallothioneins. It seems that biotic stress from bacterial invasion increased the synthesis of these stress proteins, which responded in decreased Cd concentrations. Contents of Cd and Zn in the stems of willows were combination-specific, but were always increased in dual inoculated plants. In conclusion, single inoculations with former mycorrhiza-associated B. cereus strains decreased the phytoextraction efficiency of willows by causing biotic stress. However, their joint inoculation with an ectomycorrhizal fungus is a very promising method for promoting the phytoextraction of Cd and Zn through combined physiological effects on the plant.
Electrophoresis | 2009
Ewa Kłodzińska; Michał Szumski; Katarzyna Hrynkiewicz; Ewelina Dziubakiewicz; Marek Jackowski; Bogusław Buszewski
Staphylococcus aureus is a common cause of infection in both hospitals and the community, and it is becoming increasingly virulent and resistant to antibiotics. Possibilities of fast, sensitive and cheap determination of these pathogenic bacteria are extremely important in antimicrobial therapy. In the present study, CE with chemically modified capillary and zeta potential measurements were used for differentiation of three different clinical strains of S. aureus. The data presented in this contribution suggested that electrophoretic behavior and the values of zeta potential should be very useful in distinguishing between closely related strains, which exhibited coagulase gene/protein polymorphism. Understanding the differences between S. aureus strains could help to improve our knowledge about S. aureus pathogenecity and to monitor for and respond to emergence of more virulent strains.
Microbiological Research | 2016
Sonia Szymańska; Tomasz Płociniczak; Zofia Piotrowska-Seget; Michał Złoch; Silke Ruppel; Katarzyna Hrynkiewicz
The submitted work assumes that the abundance and diversity of endophytic and rhizosphere microorganisms co-existing with the halophytic plant Aster tripolium L. growing in a salty meadow in the vicinity of a soda factory (central Poland) represent unique populations of cultivable bacterial strains. Endophytic and rhizosphere bacteria were (i) isolated and identified based on 16S rDNA sequences; (ii) screened for nifH and acdS genes; and (iii) analyzed based on selected metabolic properties. Moreover, total microbial biomass and community structures of the roots (endophytes), rhizosphere and soil were evaluated using a cultivation-independent technique (PLFA) to characterize plant-microbial interactions under natural salt conditions. The identification of the isolated strains showed domination by Gram-positive bacteria (mostly Bacillus spp.) both in the rhizosphere (90.9%) and roots (72.7%) of A. tripolium. Rhizosphere bacterial strains exhibited broader metabolic capacities, while endophytes exhibited higher specificities for metabolic activity. The PLFA analysis showed that the total bacterial biomass decreased in the following order (rhizosphere<soil<endophytes) and confirmed the dominance of Gram-positive endophytic bacteria in the roots of the halophyte. The described strain collection provides a valuable basis for a subsequent applications of bacteria in improvement of site adaptation of plants in saline soils.
Mycorrhiza | 2012
Katarzyna Hrynkiewicz; Ylva K. Toljander; Christel Baum; Petra Fransson; Andy F. S. Taylor; Martin Weih
Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix × mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal.
Archive | 2014
Katarzyna Hrynkiewicz; Christel Baum
Heavy metals are important environmental pollutants which belong to the group of non-biodegradable and persistent compounds deposited in plant tissue (e.g. vegetables) which are then consumed by animals and humans. Increased pollution of natural environment with heavy metals, particularly in areas with anthropogenic pressure, also contributes to disorders in the natural balance of microbial populations. Molecular analysis carried out during the past decades revealed that density and diversity of microorganisms significantly correlated with increased contamination of the environment with heavy metals. As a result, a selective promotion of metal-tolerant genera of microorganisms was observed. In general, microorganisms are organisms with relatively high tolerance of unfavourable conditions, and these properties evolved over millions of years. In this chapter, a variety of mechanisms responsible for adaptation of microorganisms to high heavy metal concentrations, e.g. metal sorption, uptake and accumulation, extracellular precipitation and enzymatic oxidation or reduction, will be reported. Moreover, molecular mechanisms responsible for their metal tolerance will be described. The efficiency of accumulation of heavy metals in the microbial cells will be discussed and presented in photos from a reflection electron microscope (REM). The capacities of microorganisms for metal accumulation can be exploited to remove, concentrate and recover metals from polluted sites. This provides the basis for biotechnological solutions for the remediation of contaminated environments. Bioremediation has been regarded as an environment-friendly, inexpensive and efficient means of environmental restoration. Since microorganisms constitute a key factor of this technology, knowledge of the nature and molecular mechanisms of their tolerance of increased heavy metal concentrations is essential.
Microbiological Research | 2016
Sonia Szymańska; Tomasz Płociniczak; Zofia Piotrowska-Seget; Katarzyna Hrynkiewicz
The main objective of our study was to assess density and diversity of rhizosphere (R) and endophytic (E) microorganisms associated with the halophyte S. europaea. Microorganisms were isolated from two saline sites (S1: 55dSm(-1), anthropogenic origin; S2: 112dSm(-1), natural salinity) located in central Poland and compared with microbial populations in the soil (S) using culture-independent (phospholipid fatty acids analysis, PLFA) and culture-dependent techniques. The endophytic and rhizosphere bacteria were identified and screened for nifH and acdS genes, and their metabolic properties were assessed. Strains with the potential to promote plant growth were selected for further study. PLFA analysis revealed that Gram-negative bacteria were dominant at both saline test sites; the total microbial biomass depended on the site (S1E>S). In contrast, culture-dependent techniques revealed that Gram-positive bacteria (Actinobacteria and Firmicutes) were dominant (S1: E-77.3%, R-86.3% and S2: E-59.1%, R-87.5%). Proteobacteria were observed in the rhizosphere at the lowest frequency (S1: 13.7% and S2: 12.5%). Greater salinity decreased the range and specificity of metabolic activity among the endophytes. These conditions also resulted in a broader spectrum of metabolic abilities in rhizobacteria; however, these metabolic processes were present at lower levels.