Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Kulej is active.

Publication


Featured researches published by Katarzyna Kulej.


Molecular & Cellular Proteomics | 2012

A Novel Method for the Simultaneous Enrichment, Identification, and Quantification of Phosphopeptides and Sialylated Glycopeptides Applied to a Temporal Profile of Mouse Brain Development

Giuseppe Palmisano; Benjamin L. Parker; Kasper Engholm-Keller; Sara Eun Lendal; Katarzyna Kulej; Melanie Schulz; Veit Schwämmle; Mark E. Graham; Henrik Saxtorph; Stuart J. Cordwell; Martin R. Larsen

We describe a method that combines an optimized titanium dioxide protocol and hydrophilic interaction liquid chromatography to simultaneously enrich, identify and quantify phosphopeptides and formerly N-linked sialylated glycopeptides to monitor changes associated with cell signaling during mouse brain development. We initially applied the method to enriched membrane fractions from HeLa cells, which allowed the identification of 4468 unique phosphopeptides and 1809 formerly N-linked sialylated glycopeptides. We subsequently combined the method with isobaric tagging for relative quantification to compare changes in phosphopeptide and formerly N-linked sialylated glycopeptide abundance in the developing mouse brain. A total of 7682 unique phosphopeptide sequences and 3246 unique formerly sialylated glycopeptides were identified. Moreover 669 phosphopeptides and 300 formerly N-sialylated glycopeptides differentially regulated during mouse brain development were detected. This strategy allowed us to reveal extensive changes in post-translational modifications from postnatal mice from day 0 until maturity at day 80. The results of this study confirm the role of sialylation in organ development and provide the first extensive global view of dynamic changes between N-linked sialylation and phosphorylation.


Nature | 2016

A core viral protein binds host nucleosomes to sequester immune danger signals

Avgousti Dc; Herrmann C; Katarzyna Kulej; Pancholi Nj; Nikolina Sekulic; Petrescu J; Rosalynn C. Molden; Blumenthal D; Paris Aj; Reyes Ed; Ostapchuk P; Hearing P; Seeholzer Sh; Worthen Gs; Ben E. Black; Benjamin A. Garcia; Weitzman

Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signalling.


Methods of Molecular Biology | 2015

Comprehensive Protocol to Simultaneously Study Protein Phosphorylation, Acetylation, and N-Linked Sialylated Glycosylation

Marcella Nunes Melo-Braga; María Ibáñez-Vea; Martin R. Larsen; Katarzyna Kulej

Post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation are an essential regulatory mechanism of protein function and they are associated with a range of biological processes. Since most PTMs alter the molecular mass of a protein, mass spectrometry (MS) is the ideal analytical tool for studying various PTMs. However, PTMs are generally present in substoichiometric levels and therefore their unmodified counterpart often suppresses their signal in MS. Consequently, PTM analysis by MS is a challenging task requiring highly specialized and sensitive enrichment methods. Currently, several methods have been implemented for PTM enrichment and each of them has its drawbacks and advantages as they differ in selectivity and specificity toward specific protein modifications. Unfortunately, for most of the more than 300 known modifications we have none or poor tools for selective enrichment.Here, we describe a comprehensive workflow to simultaneously study phosphorylation, acetylation, and N-linked sialylated glycosylation from the same biological sample. The protocol involves an initial titanium dioxide (TiO2) step to enrich for phosphopeptides and sialylated N-linked glycopeptides followed by glycan release and post-fractionation using sequential elution from immobilized metal affinity chromatography (SIMAC) to separate mono-phosphorylated and deglycosylated peptides from multi-phosphorylated ones. The IMAC flow-through and acidic elution is subsequently subjected to a next round of TiO2 enrichment for further separation of mono-phosphopeptides from deglycosylated peptides. In addition, the acetylated peptides present in the first TiO2 flow-through are enriched by immunoprecipitation (IP). Finally, the samples are fractionated by hydrophilic interaction liquid chromatography (HILIC) to reduce sample complexity and increase the coverage during LC-MS/MS analysis. This allows the analysis of multiple types of modifications from the same highly complex biological sample without decreasing the quality of each individual PTM study.


Analytical Chemistry | 2015

Low Resolution Data-Independent Acquisition in an LTQ-Orbitrap Allows for Simplified and Fully Untargeted Analysis of Histone Modifications.

Simone Sidoli; Johayra Simithy; Kelly R. Karch; Katarzyna Kulej; Benjamin A. Garcia

Label-free peptide quantification in liquid chromatography-mass spectrometry (LC-MS) proteomics analyses is complicated by the presence of isobaric coeluting peptides, as they generate the same extracted ion chromatogram corresponding to the sum of their intensities. Histone proteins are especially prone to this, as they are heavily modified by post-translational modifications (PTMs). Their proteolytic digestion leads to a large number of peptides sharing the same mass, while carrying PTMs on different amino acid residues. We present an application of MS data-independent acquisition (DIA) to confidently determine and quantify modified histone peptides. By introducing the use of low-resolution MS/MS DIA, we demonstrate that the signals of 111 histone peptides could easily be extracted from LC-MS runs due to the relatively low sample complexity. By exploiting an LTQ-Orbitrap mass spectrometer, we parallelized MS and MS/MS scan events using the Orbitrap and the linear ion trap, respectively, decreasing the total scan time. This, in combination with large windows for MS/MS fragmentation (50 m/z) and multiple full scan events within a DIA duty cycle, led to a MS scan cycle speed of ∼45 full MS per minute, improving the definition of extracted LC-MS chromatogram profiles. By using such acquisition method, we achieved highly comparable results to our optimized acquisition method for histone peptide analysis (R(2) correlation > 0.98), which combines data-dependent acquisition (DDA) and targeted MS/MS scans, the latter targeting isobaric peptides. By using DIA, we could also remine our data set and quantify 16 additional isobaric peptides commonly not targeted during DDA experiments. Finally, we demonstrated that by performing the full MS scan in the linear ion trap, we achieve highly comparable results as when adopting high-resolution MS scans (R(2) correlation 0.97). Taken together, results confirmed that histone peptide analysis can be performed using DIA and low-resolution MS with high accuracy and precision of peptide quantification. Moreover, DIA intrinsically enables data remining to later identify and quantify isobaric peptides unknown at the time of the LC-MS experiment. These methods will open up epigenetics analyses to the proteomics community who do not have routine access to the newer generation high-resolution MS/MS generating instruments.


Journal of Proteomics | 2013

Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets

Krzysztof Wrzesinski; Ileana R. León; Katarzyna Kulej; Richard R. Sprenger; Bodil Bjørndal; Bjørn Jostein Christensen; Rolf K. Berge; Ole Nørregaard Jensen; Adelina Rogowska-Wrzesinska

UNLABELLED Fish oil (FO) and tetradecylthioacetic acid (TTA) - a synthetic modified fatty acid have beneficial effects in regulating lipid metabolism. In order to dissect the mechanisms underlying the molecular action of those two fatty acids we have investigated the changes in mitochondrial protein expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein centric based on 2D gel electrophoresis and mass spectrometry, and LC-MS(E) based peptide centric approach. As a result we provide evidence that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate that fatty acid metabolism; lipid oxidation, amino acid metabolism and oxidative phosphorylation pathways are involved in fish oil and TTA action. Evidence for the involvement of PPAR mediated signalling is provided. Additionally we postulate that down regulation of components of complexes I and II contributes to the strong antioxidant properties of TTA. BIOLOGICAL SIGNIFICANCE This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate in a large scale that fatty acid metabolism and lipid oxidation are affected by fish oil and TTA, a phenomenon already known from more directed molecular biology studies. Our approach, however, shows additionally that amino acid metabolism and oxidative phosphorylation pathways are also strongly affected by TTA and also to some extent by fish oil administration. Strong evidence for the involvement of PPAR mediated signalling is provided linking the different metabolic effects. The global and systematic viewpoint of this study compiles many of the known phenomena related to the effects of fish oil and fatty acids giving a solid foundation for further exploratory and more directed studies of the mechanisms behind the beneficial and detrimental effects of fish oil and TTA diet supplementation. This work is already a second article in a series of studies conducted using this model of dietary intervention. In the previous study (Vigerust et al., [21]) the effects of fish oil and TTA on the plasma lipids and cholesterol levels as well as key metabolic enzymes in the liver have been studied. In an ongoing study more work is being done to explore in detail for example the link between the down regulation of the components of the respiratory chain (observed in this study) and the strong antioxidant effects of TTA. The reference diet in this study has been designed to mimic an unhealthy - high fat diet that is thought to contribute to the development of metabolic syndrome - a condition that is strongly associated with diabetes, obesity and heart failure. Fish oil and TTA are known to have beneficial effects for the fatty acid metabolism and have been shown to alleviate some of the symptoms of the metabolic syndrome. To date very little is known about the molecular mechanisms behind these beneficial effects and the potential pitfalls of the consumption of those two compounds. Only studies of each compound separately and using only small scale molecular biology approaches have been carried out. The results of this work provide an excellent starting point for further studies that will help to understand the metabolic effects of fish oil and TTA and will hopefully help to design dietary programs directed towards reduction of the prevalence of metabolic syndrome and associated diseases.


Molecular & Cellular Proteomics | 2017

Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection

Katarzyna Kulej; Daphne C. Avgousti; Simone Sidoli; Christin Herrmann; Ashley N. Della Fera; Eui Tae Kim; Benjamin A. Garcia; Matthew D. Weitzman

Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition.


Methods | 2015

Characterization of histone post-translational modifications during virus infection using mass spectrometry-based proteomics.

Katarzyna Kulej; Daphne C. Avgousti; Matthew D. Weitzman; Benjamin A. Garcia

Viruses are obligate intracellular parasites that necessarily rely on hijacking cellular resources to produce viral progeny. The success of viral infection requires manipulation of host chromatin in order to activate genes useful for production of viral proteins as well as to suppress antiviral responses. Host chromatin manipulation on a global level is likely reliant on modulation of post-translational modifications (PTMs) on histone proteins. Mass spectrometry (MS) is a powerful tool to quantify and identify novel histone PTMs, beyond the limitations of site-specific antibodies. Here, we employ MS to investigate global changes in histone PTM relative abundance in human cells during infection with adenovirus. Our method reveals several changes in histone PTM patterns during infection. We propose that this method can be used to uncover global changes in histone PTM patterns that are universally modulated by viruses to take over the cell.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma

Ranran Wang; Xing Jun Cao; Katarzyna Kulej; Wei Liu; Tongcui Ma; Margo MacDonald; Cheng Ming Chiang; Benjamin A. Garcia; Jianxin You

Significance BRD4 plays a vital role in cellular growth control. Because BRD4 is dysregulated in a wide range of aggressive malignancies, it is being increasingly implicated as a major driver of oncogenic growth and a novel target for cancer therapy. However, how BRD4 is regulated to maintain its normal function in healthy cells and how alteration of this process leads to cancer remain poorly understood. We discovered that BRD4 is hyperphosphorylated in cancers and that this hyperphosphorylation may be a general mechanism to support its oncogenic activities. Our study shows how dysregulation of BRD4 function could lead to tumorigenesis. Our discovery also provides the rationale for investigating how cellular signaling pathways modulate BRD4 phosphorylation to control its function during cancer development. The epigenetic reader BRD4 plays a vital role in transcriptional regulation, cellular growth control, and cell-cycle progression. Dysregulation of BRD4 function has been implicated in the pathogenesis of a wide range of cancers. However, how BRD4 is regulated to maintain its normal function in healthy cells and how alteration of this process leads to cancer remain poorly understood. In this study, we discovered that BRD4 is hyperphosphorylated in NUT midline carcinoma and identified CDK9 as a potential kinase mediating BRD4 hyperphosphorylation. Disruption of BRD4 hyperphosphorylation using both chemical and molecular inhibitors led to the repression of BRD4 downstream oncogenes and abrogation of cellular transformation. BRD4 hyperphosphorylation is also observed in other cancers displaying enhanced BRD4 oncogenic activity. Our study revealed a mechanism that may regulate BRD4 biological function through phosphorylation, which, when dysregulated, could lead to oncogenesis. Our finding points to strategies to target the aberrant BRD4 signaling specifically for cancer intervention.


Journal of Cell Biology | 2017

Why proteomics is not the new genomics and the future of mass spectrometry in cell biology

Simone Sidoli; Katarzyna Kulej; Benjamin A. Garcia

Mass spectrometry (MS) is an essential part of the cell biologist’s proteomics toolkit, allowing analyses at molecular and system-wide scales. However, proteomics still lag behind genomics in popularity and ease of use. We discuss key differences between MS-based -omics and other booming -omics technologies and highlight what we view as the future of MS and its role in our increasingly deep understanding of cell biology.


Journal of Biological Chemistry | 2016

The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish

Martin W. Berchtold; Triantafyllos Zacharias; Katarzyna Kulej; Kevin Wang; Raffaela Torggler; Thomas Jespersen; Jau-Nian Chen; Martin R. Larsen; Jonas M. la Cour

Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish.

Collaboration


Dive into the Katarzyna Kulej's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Sidoli

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Martin R. Larsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Daphne C. Avgousti

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Weitzman

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eui Tae Kim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Kasper Engholm-Keller

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Mark E. Graham

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Phillip J. Robinson

Children's Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge