Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Kuter is active.

Publication


Featured researches published by Katarzyna Kuter.


European Journal of Neuroscience | 2005

A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson's disease?

Krystyna Ossowska; Jadwiga Wardas; Maria Śmiałowska; Katarzyna Kuter; T. Lenda; Joanna M. Wierońska; Barbara Zięba; Przemysław Nowak; J. Dąbrowska; A. Bortel; A. Kwieciński; S. Wolfarth

The aim of the present study was to examine the influence of the long‐term paraquat administration on the dopaminergic nigrostriatal system in rats. Paraquat was injected at a dose of 10 mg/kg i.p. for 4–24 weeks. We found that this pesticide reduced the number of tyrosine hydroxylase‐immunoreactive neurons of the substantia nigra; after the 4‐week treatment the reduction (17%, nonsignificant) was confined to the rostrocentral region of this structure but, after 24 weeks, had spread along its whole length and was ≈ 37%. Moreover, it induced a biphasic effect on dopaminergic transmission. First, levels of dopamine, its metabolites and turnover were elevated (4–8 weeks) in the caudate–putamen, then all these parameters returned to control values (12 weeks) and dropped by 25–30% after 24 weeks. The binding of [3H]GBR 12,935 to dopamine transporter in the caudate–putamen was decreased after 4–8 weeks, then returned to control values after 12 weeks but was again decreased after 24 weeks. Twenty‐four‐week paraquat administration also decreased the level of tyrosine hydroxylase (Western blot) in the caudate–putamen. In addition, paraquat activated serotonin and noradrenaline transmission during the first 12 weeks of treatment but no decreases in levels of these neurotransmitters were observed after 24 weeks. The above results seem to suggest that long‐term paraquat administration produces a slowly progressing degeneration of nigrostriatal neurons, leading to delayed deficits in dopaminergic transmission, which may resemble early, presymptomatic, stages of Parkinsons disease.


Brain Research | 2007

Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats.

Katarzyna Kuter; Maria Śmiałowska; Joanna M. Wierońska; Barbara Zięba; Jadwiga Wardas; Małgorzata Pietraszek; Przemysław Nowak; Izabela Biedka; Wojciech Roczniak; Jolanta Konieczny; S. Wolfarth; Krystyna Ossowska

Paraquat is a toxin suggested to contribute to pathogenesis of Parkinsons disease. The aim of the present study was to examine toxic influence of subchronic treatment with this pesticide (5 days, one injection per day, 2-3 days of withdrawal) on dopaminergic, serotonergic, noradrenergic and GABAergic neurons. Paraquat decreased the number of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra by 22% (measured 3 days after withdrawal). Two days after withdrawal the levels of the dopamine metabolites and dopamine turnover in the caudate-putamen, substantia nigra and prefrontal cortex were reduced by ca. 20-60%, and the binding of [(3)H]GBR 12,935 to dopamine transporter dropped by 25-40% in the caudate-putamen. Three days after paraquat withdrawal, the level of dopamine in the caudate-putamen was significantly increased, and earlier decreases in DOPAC and HVA in the substantia nigra, as well as [(3)H]GBR 12,935 binding in the caudate-putamen were reversed. Moreover, an increase in serotonin turnover in the caudate-putamen and prefrontal cortex, and noradrenaline level in the former structure was observed 2-3 days after paraquat withdrawal. Three days after the last paraquat injection 24-35% decreases in the proenkephalin mRNA levels and 5-7% reduction in glutamic acid decarboxylase (GAD)67 mRNA were found in the caudate-putamen. The present study suggests that subchronic paraquat administration triggers processes characteristic of early stages of dopaminergic neuron degeneration, and activates compensatory mechanisms involving dopaminergic, noradrenergic, serotonergic and GABAergic transmissions.


Amino Acids | 2007

An influence of ligands of metabotropic glutamate receptor subtypes on parkinsonian-like symptoms and the striatopallidal pathway in rats

Krystyna Ossowska; Jolanta Konieczny; Jadwiga Wardas; Małgorzata Pietraszek; Katarzyna Kuter; S. Wolfarth; Andrzej Pilc

Summary.Several data indicate that inhibition of glutamatergic transmission may be important to alleviate of parkinsonian symptoms. Therefore, the aim of the present paper is to review recent studies on the search for putative antiparkinsonian-like effects of mGluR ligands and their brain targets. In order to inhibit glutamatergic transmission, the group I mGluRs (mGluR1 and mGluR5) were blocked, and group II (mGluR2/3) or III (mGluR4/7/8) mGluRs were activated.Systemic or intrastriatal administration of group I mGluR antagonists (mGluR5 – MPEP, MTEP; mGluR1 – AIDA) was found to inhibit parkinsonian-like symptoms (catalepsy, muscle rigidity) in rats. MPEP administered systemically and mGluR1 antagonists (AIDA, CPCCOEt, LY367385) injected intrastriatally reversed also the haloperidol-increased proenkephalin (PENK) mRNA expression in the striatopallidal pathway. Similarly, ACPT-1, a group III mGluR agonist, administered into the striatum, globus pallidus or substantia nigra inhibited the catalepsy. Intrastriatal injection of this compound reduced the striatal PENK expression induced by haloperidol. In contrast, a group II mGluR agonist (2R,4R-APDC) administered intrastriatally reduced neither PENK expression nor the above-mentioned parkinsonian-like symptoms. Moreover, a mixed mGluR8 agonist/AMPA antagonist, (R,S)-3,4-DCPG, administered systemically evoked catalepsy and enhanced both the catalepsy and PENK expression induced by haloperidol.The results reviewed in this article seem to indicate that group I mGluR antagonists or some agonists of group III may possess antiparkinsonian properties, and point at the striatopallidal pathway as a potential target of therapeutic intervention.


Neuroscience | 2006

Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats : Implications for Parkinson's disease

Krystyna Ossowska; Maria Śmiałowska; Katarzyna Kuter; Joanna M. Wierońska; Barbara Zięba; Jadwiga Wardas; Przemysław Nowak; J. Dąbrowska; A. Bortel; Izabela Biedka; G. Schulze; Hans Rommelspacher

A deficiency of the dopaminergic transmission in the mesocortical system has been suggested to contribute to cognitive disturbances in Parkinsons disease. Therefore, the aim of the present study was to examine whether the long-term administration of a commonly used herbicide, paraquat, which has already been found to induce a slowly progressing degeneration of the nigrostriatal neurons, influences mesocortical dopaminergic neurons in rats. Paraquat at a dose of 10 mg/kg i.p. was injected either acutely or once a week for 4, 8, 12 and 24 weeks. Acute treatment with this pesticide increased the level of homovanillic acid (HVA) and HVA/dopamine ratio in the prefrontal cortex. After 8 weeks of administration paraquat increased the number of stereologically counted tyrosine hydroxylase-immunoreactive (TH-ir) neurons and their staining intensity in the ventral tegmental area (VTA), which is a source of the mesocortical dopaminergic projection. At the same time, few TH-ir neurons appeared in different regions of the cerebral cortex: in the frontal, cingulate, retrosplenial and parietal cortices. Chronic paraquat administration did not influence the level of dopamine in the prefrontal cortex but increased the levels of its metabolites: 3,4-dihydroxyphenylacetic acid (after 8-12 weeks), HVA (after 4 and 12 weeks) and HVA/dopamine ratio (4 weeks). After 24 weeks this pesticide reduced the number of TH-ir neurons in the VTA by 42% and of the Nissl-stained neurons by 26%, and induced shrinkage of this structure by ca. 25%. Moreover, TH-ir neurons in the cortex were no more visible after such a long period of administration and levels of dopamine metabolites returned to control values. The present results suggest that the long-term paraquat administration destroys dopaminergic neurons of the VTA. However, compensatory activation of the VTA neurons and cortex overcomes progressing degeneration and maintains cortical dopaminergic transmission.


Neuroscience | 2007

The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid on the parkinsonian-like akinesia and striatal proenkephalin and prodynorphin mRNA expression in rats.

Jolanta Konieczny; Jadwiga Wardas; Katarzyna Kuter; Andrzej Pilc; Krystyna Ossowska

Group III metabotropic glutamate receptors (mGluRs) are widely distributed in the basal ganglia, especially on the terminals of pathways which seem to be overactive in Parkinsons disease. The aim of the present study was to determine whether (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid (ACPT-1), an agonist of group III mGluRs, injected bilaterally into the globus pallidus (GP), striatum or substantia nigra pars reticulata (SNr), can attenuate the haloperidol-induced catalepsy in rats, and whether that effect was related to modulation of proenkephalin (PENK) or prodynorphin (PDYN) mRNA expression in the striatum. Administration of ACPT-1 (0.05-1.6 microg/0.5 microl/side) caused a dose-and-structure-dependent decrease in the haloperidol (0.5 mg/kg i.p. or 1.5 mg/kg s.c.)-induced catalepsy whose order was as follows: GP>striatum>SNr. ACPT-1, given alone to any of those structures, induced no catalepsy in rats. Haloperidol (3 x 1.5 mg/kg s.c.) significantly increased PENK mRNA expression in the striatum, while PDYN mRNA levels were not affected by that treatment. ACPT-1 (3 x 1.6 microg/0.5 microl/side) injected into the striatum significantly attenuated the haloperidol-increased PENK mRNA expression, whereas administration of that compound into the GP or SNr did not influence the haloperidol-increased striatal PENK mRNA levels. Our results demonstrate that stimulation of group III mGluRs in the striatum, GP or SNr exerts antiparkinsonian-like effects in rats. The anticataleptic effect of intrastriatally injected ACPT-1 seems to correlate with diminished striatal PENK mRNA expression. However, since the anticataleptic effect produced by intrapallidal and intranigral injection of ACPT-1 is not related to a simultaneous decrease in striatal PENK mRNA levels, it is likely that a decrease in enkephalin biosynthesis is not a necessary condition to obtain an antiparkinsonian effect.


Neurochemical Research | 2010

Increased Reactive Oxygen Species Production in the Brain After Repeated Low-Dose Pesticide Paraquat Exposure in Rats. A Comparison with Peripheral Tissues

Katarzyna Kuter; Przemysław Nowak; Krystyna Gołembiowska; Krystyna Ossowska

The pesticide paraquat (PQ) was found to be a suitable xenobiotic to model Parkinson’s disease. The reactive oxygen species (ROS) production was suggested to be the main cause of PQ toxicity but very few evidences were found for its generation in the brain in vivo after ip administration. We compared the effects of PQ-induced ROS generation between the brain structures and the peripheral tissues using two different hydroxyl radical generation markers. Repeated but not single ip PQ administration increased the levels of ROS in the striatal homogenates but, when measured in the extracellular microdialysis filtrate, no change was observed. The increased dopamine release was detected in the striatum after the fourth PQ administration and its basal levels were decreased. A single treatment with the pesticide did not influence ROS production in the lungs or kidneys but repeated intoxication decreased its levels. These results suggest that repeated, systemic administration of a low dose of PQ triggers intracellular ROS formation in the brain and can cause slowly progressing degenerative processes, without the toxic effects in the peripheral tissues.


Biochimica et Biophysica Acta | 2016

Adaptation within mitochondrial oxidative phosphorylation supercomplexes and membrane viscosity during degeneration of dopaminergic neurons in an animal model of early Parkinson's disease.

Katarzyna Kuter; Manuela Kratochwil; Klemencja Berghauzen-Maciejewska; Urszula Głowacka; Michiru D. Sugawa; Krystyna Ossowska; Norbert A. Dencher

In Parkinsons disease (PD) motor symptoms are not observed until loss of 70% of dopaminergic neurons in substantia nigra (SN), preventing early diagnosis. Mitochondrial dysfunction was indicated in neuropathological process already at early PD stages. Aging and oxidative stress, the main factors in PD pathogenesis, cause membrane stiffening, which could influence functioning of membrane-bound oxidative phosphorylation (OxPhos) complexes (Cxs) in mitochondria. In 6-OHDA rat model, medium-sized dopaminergic lesion was used to study mitochondrial membrane viscosity and changes at the level of OxPhos Cxs and their higher assembled states-supercomplexes (SCxs), during the early degeneration processes and after it. We observed loss of dopaminergic phenotype in SN and decreased dopamine level in striatum (STR) before actual death of neurons in SN. Behavioural deficits induced by lesion were reversed despite progressing neurodegeneration. Along with degeneration process in STR, mitochondrial Cx I performance and amount decreased in almost all forms of SCxs. Also, progressing decrease of Cx IV performance in SCxs (I1III2IV3-1, I1IV2-1) in STR was observed during degeneration. In SN, SCxs containing Cx I increased protein amount and a shifted individual Cx I1 into superassembled states. Importantly, mitochondrial membrane viscosity changed in parallel with altered SCxs performance. We show for the first time changes at the level of mitochondrial membrane viscosity influencing SCxs function after dopaminergic system degeneration. It implicates that altered mitochondrial membrane viscosity could play an important role in regulation of mitochondria functioning and pathomechanisms of PD. The data obtained are also discussed in relation to compensatory processes observed.


PLOS ONE | 2015

Alterations of BDNF and trkB mRNA Expression in the 6-Hydroxydopamine-Induced Model of Preclinical Stages of Parkinson’s Disease: An Influence of Chronic Pramipexole in Rats

Klemencja Berghauzen-Maciejewska; Jadwiga Wardas; Barbara Kosmowska; Urszula Głowacka; Katarzyna Kuter; Krystyna Ossowska

Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively.


Neurotoxicity Research | 2011

Glycogen Synthase Kinase 3β and Its Phosphorylated Form (Y216) in the Paraquat-Induced Model of Parkinsonism

Martyna Songin; Joanna B. Strosznajder; Magdalena Fitał; Katarzyna Kuter; Wacław Kolasiewicz; Przemysław Nowak; Krystyna Ossowska

Parkinson’s disease is a slowly progressing disease, due to a lesion of dopaminergic neurons in the substantia nigra and a dramatic loss of dopamine in the striatum. It is now accepted that several environmental agents including the herbicide paraquat (PQ) may contribute to its pathogenesis. However, till now nothing is known about the role of glycogen synthase kinase-3β (GSK-3β) in the PQ toxicity. Therefore, the aim of this study was to examine the influence of 37-week administration of PQ in rats on the immunohistochemically measured levels of the total GSK-3β and its active, tyrosine 216 (pY216)—phosphorylated form in subcellular fractions of the midbrain with pons, as well as of the striatum. The present results revealed that the long-term PQ administration increased the levels of total and active forms of GSK-3β in the midbrain with pons, whereas decreased them in the striatum. Examination of the lesion extent showed a decrease in the number of tyrosine-immunoreactive neurons in the substantia nigra pars compacta, ventral tegmental area, and locus coeruleus, as well as lower DOPAC/dopamine ratio and noradrenaline level in the striatum in rats treated with PQ. The long-term PQ administration disturbed also motor activity of rats. Summarizing, the present data indicate that the long-term exposure of rats to PQ, a commonly used herbicide, diversely alters levels of GSK-3β in different brain structures, which may be associated with their vulnerability to its toxicity.


Brain Research | 2012

6-OHDA injections into A8–A9 dopaminergic neurons modelling early stages of Parkinson's disease increase the harmaline-induced tremor in rats

Wacław Kolasiewicz; Katarzyna Kuter; Klemencja Berghauzen; Przemysław Nowak; Gert Schulze; Krystyna Ossowska

The aim of the present study was to examine the influence of a unilateral 6-hydroxydopamine (6-OHDA)-induced partial lesion of both the substantia nigra pars compacta (SNc, A9) and retrorubral field (RRF, A8) on the tremor evoked by harmaline. 6-OHDA (8μg/2μl) was injected unilaterally into the region of the posterior part of the SNc and RRF. Harmaline was administered in a dose of 7.5mg/kg ip on the eighth day after the operation and tremor of forelimbs, head and trunk was measured. We found that the lesion increased intensity of the tremor induced by harmaline but did not influence its character. Stereological examination of the lesion extent revealed losses of dopaminergic (tyrosine hydroxylase-immunoreactive) neurons in the anterior (30%) and posterior (72%) SNc, as well as in RRF (72% on the average). Levels of dopamine and all its metabolites, as well as noradrenaline concentrations, were ipsilaterally moderately decreased in the caudate-putamen in the lesioned animals, however, dopamine and DOPAC in the anterior cerebellum were increased. In the caudate-putamen, the ipsi/contra ratio of dopamine level correlated negatively, while that of dopamine turnover positively with the tremor intensity. However, in the anterior cerebellum an inverse relationship was found. Moreover, this symptom correlated positively with the serotonin level and negatively with the 5-HIAA/serotonin ratio on the contralateral side of the posterior cerebellum. The present results seem to indicate that the modulation of dopaminergic and serotonergic transmissions by the lesion modelling early stages of Parkinsons disease may influence tremor triggered in the cerebellum.

Collaboration


Dive into the Katarzyna Kuter's collaboration.

Top Co-Authors

Avatar

Krystyna Ossowska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jadwiga Wardas

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Przemysław Nowak

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Urszula Głowacka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge