Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Marta Zoltowska is active.

Publication


Featured researches published by Katarzyna Marta Zoltowska.


Brain | 2013

Congenital myasthenic syndromes due to mutations in ALG2 and ALG14

Judith Cossins; Katsiaryna Belaya; Debbie Hicks; Mustafa A. Salih; Sarah Finlayson; Nicola Carboni; Wei Wei Liu; Susan Maxwell; Katarzyna Marta Zoltowska; Golara Torabi Farsani; Steven H. Laval; Mohammed zain Seidhamed; Peter Donnelly; David R. Bentley; Simon J. McGowan; Juliane S. Müller; Jacqueline Palace; Hanns Lochmüller; David Beeson

Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.


Annals of the New York Academy of Sciences | 2012

The search for new antigenic targets in myasthenia gravis

Judith Cossins; Katsiaryna Belaya; Katarzyna Marta Zoltowska; Inga Koneczny; Susan Maxwell; Leslie Jacobson; M I Leite; Patrick Waters; Angela Vincent; David Beeson

Around 80% of myasthenia gravis patients have antibodies against the acetylcholine receptor, and 0–60% of the remaining patients have antibodies against the muscle‐specific tyrosine kinase, MuSK. Another recently identified antigen is low‐density lipoprotein receptor‐related protein 4 (Lrp4). To improve the existing assays and widen the search for new antigenic targets, we have employed cell‐based assays in which candidate target proteins are expressed on the cell surface of transfected cells and probed with patient sera. These assays, combined with use of myotube cultures to explore the effects of the antibodies, enable us to begin to identify new antigenic targets and test antibody pathogenicity in vitro.


Human Molecular Genetics | 2013

Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR

Katarzyna Marta Zoltowska; R. Webster; Sarah Finlayson; Susan Maxwell; Judith Cossins; Juliane S. Müller; Hanns Lochmüller; David Beeson

Mutations in GFPT1 underlie a congenital myasthenic syndrome (CMS) characterized by a limb-girdle pattern of muscle weakness. Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is a key rate-limiting enzyme in the hexosamine biosynthetic pathway providing building blocks for the glycosylation of proteins and lipids. It is expressed ubiquitously and it is not readily apparent why mutations in this gene should cause a syndrome with symptoms restricted to muscle and, in particular, to the neuromuscular junction. Data from a muscle biopsy obtained from a patient with GFPT1 mutations indicated that there were reduced endplate acetylcholine receptors. We, therefore, further investigated the relationship between identified mutations in GFPT1 and expression of the muscle acetylcholine receptor. Cultured myotubes derived from two patients with GFPT1 mutations showed a significant reduction in cell-surface AChR expression (Pt1 P < 0.0001; Pt2 P = 0.0097). Inhibition of GFPT1 enzymatic activity or siRNA silencing of GFPT1 expression both resulted in reduced AChR cell-surface expression. Western blot and gene-silencing experiments indicate this is due to reduced steady-state levels of AChR α, δ, ε, but not β subunits rather than altered transcription of AChR-subunit RNA. Uridine diphospho-N-acetylglucosamine, a product of the hexosamine synthetic pathway, acts as a substrate at an early stage in the N-linked glycosylation pathway. Similarity between CMS due to GFPT1 mutations and CMS due to DPAGT1 mutations would suggest that reduced endplate AChR due to defective N-linked glycosylation is a primary disease mechanism in this disorder.


BMC Biology | 2016

Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta.

Akira Kuzuya; Katarzyna Marta Zoltowska; Kathryn Leigh Post; Muriel Arimon; Xuejing Li; Sarah Svirsky; Masato Maesako; Alona Muzikansky; Vivek Gautam; Dora M. Kovacs; Bradley T. Hyman; Oksana Berezovska

BackgroundSynaptic loss strongly correlates with memory deterioration. Local accumulation of amyloid β (Aβ) peptide, and neurotoxic Aβ42 in particular, due to abnormal neuronal activity may underlie synaptic dysfunction, neurodegeneration, and memory impairments. To gain an insight into molecular events underlying neuronal activity-regulated Aβ production at the synapse, we explored functional outcomes of the newly discovered calcium-dependent interaction between Alzheimer’s disease-associated presenilin 1 (PS1)/γ-secretase and synaptic vesicle proteins.ResultsMass spectrometry screen of mouse brain lysates identified synaptotagmin 1 (Syt1) as a novel synapse-specific PS1-binding partner that shows Ca2+-dependent PS1 binding profiles in vitro and in vivo. We found that Aβ level, and more critically, conformation of the PS1 and the Aβ42/40 ratio, are affected by Syt1 overexpression or knockdown, indicating that Syt1 and its interaction with PS1 might regulate Aβ production at the synapse. Moreover, β-secretase 1 (BACE1) stability, β- and γ-secretase activity, as well as intracellular compartmentalization of PS1 and BACE1, but not of amyloid precursor protein (APP), nicastrin (Nct), presenilin enhancer 2 (Pen-2), or synaptophysin (Syp) were altered in the absence of Syt1, suggesting a selective effect of Syt1 on PS1 and BACE1 trafficking.ConclusionsOur findings identify Syt1 as a novel Ca2+-sensitive PS1 modulator that could regulate synaptic Aβ, opening avenues for novel and selective synapse targeting therapeutic strategies.


The EMBO Journal | 2018

Tau protein liquid–liquid phase separation can initiate tau aggregation

Susanne Wegmann; Bahareh Eftekharzadeh; Katharina Tepper; Katarzyna Marta Zoltowska; Rachel E. Bennett; Simon Dujardin; Pawel R Laskowski; Danny MacKenzie; Tarun Kamath; Caitlin Commins; Charles R. Vanderburg; Allyson D. Roe; Zhanyun Fan; Amandine Molliex; Amayra Hernández-Vega; Daniel J. Müller; Anthony A. Hyman; Eckhard Mandelkow; J. Paul Taylor; Bradley T. Hyman

The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimers disease is unknown. Here, we propose that soluble tau species can undergo liquid–liquid phase separation (LLPS) under cellular conditions and that phase‐separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho‐tau isolated from human Alzheimer brain. Droplet‐like tau can also be observed in neurons and other cells. We found that tau droplets become gel‐like in minutes, and over days start to spontaneously form thioflavin‐S‐positive tau aggregates that are competent of seeding cellular tau aggregation. Since analogous LLPS observations have been made for FUS, hnRNPA1, and TDP43, which aggregate in the context of amyotrophic lateral sclerosis, we suggest that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.


eLife | 2017

Pathogenic PS1 phosphorylation at Ser367

Masato Maesako; Jana Horlacher; Katarzyna Marta Zoltowska; Ksenia V. Kastanenka; Eleanna Kara; Sarah Svirsky; Laura J. Keller; Xuejing Li; Bradley T. Hyman; Brian J. Bacskai; Oksana Berezovska

The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI: http://dx.doi.org/10.7554/eLife.19720.001


Molecular Neurodegeneration | 2017

Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production

Katarzyna Marta Zoltowska; Masato Maesako; Iryna Lushnikova; Shuko Takeda; Laura J. Keller; G. G. Skibo; Bradley T. Hyman; Oksana Berezovska

BackgroundAlzheimer’s disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid β (Aβ) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention.MethodsPS1-based cell-permeable peptide targeting PS1-Syt1 binding site was designed to inhibit PS1-Syt1 interaction in neurons. PS1 conformation, synaptic vesicle exocytosis and trafficking were assayed by fluorescence lifetime imaging microscopy (FLIM), glutamate release/synaptopHluorin assay, and fluorescence recovery after photobleaching, respectively. Syt1 level and interaction with PS1 in control and sporadic AD brains were determined by immunohistochemistry and FLIM. AAV-mediated delivery of Syt1 into mouse hippocampi was used to investigate the therapeutic potential of strengthening PS1-Syt1 binding in vivo. Statistical significance was determined using two-tailed unpaired Student’s t-test, Mann-Whitney’s U-test or two-way ANOVA followed by a Bonferroni’s post-test.ResultsWe demonstrate that targeted inhibition of the PS1-Syt1 binding in neurons, without changing the proteins’ expression level, triggers “pathogenic” conformational shift of PS1, and consequent increase in the Aβ42/40 ratio. Moreover, our data indicate that PS1, by binding directly to Syt1, regulates synaptic vesicle trafficking and facilitates exocytosis and neurotransmitter release. Analysis of human brain tissue revealed that not only Syt1 levels but also interactions between remaining Syt1 and PS1 are diminished in sporadic AD. On the other hand, overexpression of Syt1 in mouse hippocampi was found to potentiate PS1-Syt1 binding and promote “protective” PS1 conformation.ConclusionsThe study reports novel functions of PS1 and Syt1 at the synapse, and demonstrates the importance of PS1-Syt1 binding for exocytosis and safeguarding PS1 conformation. It suggests that reduction in the Syt1 level and PS1-Syt1 interactions in AD brain may present molecular underpinning of the pathogenic PS1 conformation, increased Aβ42/40 ratio, and impaired exocytosis.


Molecular Neurobiology | 2018

Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer’s Disease Pathogenesis

Katarzyna Marta Zoltowska; Oksana Berezovska

Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer’s disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called “closed” and “open” conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since “closed” PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.


Molecular Medicine | 2016

Interrelationship between changes in the amyloid β 42/40 ratio and presenilin 1 conformation.

Katarzyna Marta Zoltowska; Masato Maesako; Oksana Berezovska

The ratio of the longer (Aβ42/Aβ43) to shorter (Aβ40) species is a critical factor determining amyloid fibril formation, neurotoxicity and progression of the amyloid pathology in Alzheimer’s disease. The relative levels of the different Aβ species are affected by activity and conformation of the γ-secretase complex catalytic component presenilin 1 (PS1). The enzyme exists in a dynamic equilibrium of the conformational states, with so-called “close” conformation associated with the shift of the γ-secretase cleavage toward the production of longer, neurotoxic Aβ species. In the current study, fluorescence lifetime imaging microscopy, spectral Förster resonance energy transfer, calcium imaging and cytotoxicity assays were utilized to explore a reciprocal link between the Aβ42 and Aβ40 peptides present at various ratios and PS1 conformation in primary neurons. We report that exposure to Aβ peptides at a relatively high ratio of Aβ42/40 causes conformational change within the PS1 subdomain architecture toward the pathogenic “closed” state. Mechanistically, the Aβ42/40 peptides present at the relatively high ratio increase intracellular calcium levels, which were shown to trigger pathogenic PS1 conformation. This indicates that there is a reciprocal cross-talk between the extracellular Aβ peptides and PS1 conformation within a neuron, with Aβ40 showing some protective effect. The pathogenic shift within the PS1 domain architecture may further shift the production of Aβ peptides toward the longer, neurotoxic Aβ species. These findings link elevated calcium, Aβ42 and PS1/γ-secretase conformation, and offer possible mechanistic explanation of the impending exacerbation of the amyloid pathology.


Oxidative Medicine and Cellular Longevity | 2018

Oxidant/Antioxidant Imbalance in Alzheimer’s Disease: Therapeutic and Diagnostic Prospects

Joanna Wojsiat; Katarzyna Marta Zoltowska; Katarzyna Laskowska-Kaszub; Urszula Wojda

Alzheimers disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid β (Aβ) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aβ overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.

Collaboration


Dive into the Katarzyna Marta Zoltowska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge