Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Pańczyk is active.

Publication


Featured researches published by Katarzyna Pańczyk.


ChemMedChem | 2015

Cinnamamide Derivatives for Central and Peripheral Nervous System Disorders—A Review of Structure–Activity Relationships

Agnieszka Gunia-Krzyżak; Katarzyna Pańczyk; Anna M. Waszkielewicz; Henryk Marona

The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti‐inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the γ‐aminobutyric acid type A (GABAA) receptors, N‐methyl‐D‐aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage‐gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target‐based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure–activity relationships discussed.


Current Pharmaceutical Design | 2015

Serotonergic System and Its Role in Epilepsy and Neuropathic Pain Treatment: A Review Based on Receptor Ligands

Katarzyna Pańczyk; Sylwia Golda; Anna M. Waszkielewicz; Dorota Zelaszczyk; Agnieszka Gunia-Krzyżak; Henryk Marona

The serotonergic system is involved in pathomechanisms of both epilepsy and neuropathic pain. So far, participation in the epileptogenesis and maintenance of epilepsy was proved for 5-HT1A, 5-HT2C, 5-HT3, 5-HT4 and 5-HT7 receptors as well as 5-HTT serotonin transporter. Depending on the receptor type or its localization, its stimulation may increase or decrease neuronal excitability. According to the available data, neuropathic pain mechanisms involve 5-HT1A/1B/1D, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, 5-HT7 receptors and 5-HTT serotonin transporter. Changes in their expression modulate pain mainly by affecting the transmission through serotonergic descending pathways. Several compounds, whose mechanisms of action base on influence on the serotonergic system, are already in use. These are 5-HT3 agonists (triptans) in case of migraine, tricyclic antidepressants or monoamine reuptake inhibitors in neuropathic pain treatment. In addition, selective and non-selective ligands are tested for their anticonvulsant or analgesic properties. Some ED50 values have been already obtained in such animal models as maximal electroshock (MES)-induced seizures (epilepsy), spinal nerve ligation (SNL), chronic constriction injury (CCI) or formalin (neuropathic pain). This review shows that in case of drug discovery within the serotonergic system one must take into account special significance of factors such as: the species, the type of model, the route of administration, and the dose range.


Bioorganic & Medicinal Chemistry | 2017

Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH3 or 2-CH3

Agnieszka Gunia-Krzyżak; Dorota Żelaszczyk; Anna Rapacz; Ewa Żesławska; Anna M. Waszkielewicz; Katarzyna Pańczyk; Karolina Słoczyńska; Elżbieta Pękala; Wojciech Nitek; Barbara Filipek; Henryk Marona

A series of twenty two (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH3 or 2-CH3 was designed, synthesized and evaluated for anticonvulsant activity in rodent models of seizures: maximal electroshock (MES) test, subcutaneous pentylenetetrazole (scPTZ) test, and 6-Hz test. There were identified three most active compounds: S-(2E)-N-(1-hydroxypropan-2-yl)-3-(2-methylphenyl)prop-2-enamide (5) (ED50 MES=42.56, ED50 scPTZ=58.38, ED50 6-Hz 44mA=42.27mg/kg tested in mice after intraperitoneal (i.p.) administration); R,S-(2E)-3-(4-chlorophenyl)-N-(1-hydroxybutan-2-yl)prop-2-enamide (6) (ED50 MES=53.76, ED50 scPTZ=90.31, ED50 6-Hz 44mA=92.86mg/kg mice, i.p.); and R,S-(2E)-3-(4-chlorophenyl)-N-(2-hydroxypropyl)prop-2-enamide (11) (ED50 MES=55.58, ED50 scPTZ=102.15, ED50 6-Hz 44mA=51.27mg/kg mice, i.p.). Their structures and configurations were confirmed by crystal X-ray diffraction method. The structure-activity studies among the tested series showed that chlorine atom in position para or methyl group in position ortho of phenyl ring were beneficial for anticonvulsant activity. Methyl group in position para of phenyl ring decreased anticonvulsant activity in reported series of cinnamamide derivatives.


Journal of Biochemical and Molecular Toxicology | 2016

In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4‐substituted 1‐(2‐methoxyphenyl)piperazine derivatives

Karolina Słoczyńska; Katarzyna Pańczyk; Anna M. Waszkielewicz; Henryk Marona; Elżbieta Pękala

In vitro mutagenic, antimutagenic, and antioxidant potency evaluation and biotransformation of six novel 4‐substituted 1‐(2‐methoxyphenyl)piperazine derivatives demonstrating antidepressant‐like activity were investigated. Mutagenic and antimutagenic properties were assessed using the Ames test; free radical scavenging activity was evaluated with 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging assay and biotransformation was performed with liver microsomes. It was found that all tested compounds are not mutagenic in bacterial strains TA100 and TA1535 and exhibit antimutagenic effects in the Ames test. Noteworthy, compounds possessing propyl linker between phenoxyl and N‐(2‐methoxyphenyl)piperazine displayed more pronounced antimutagenic properties than derivatives with ethoxyethyl linker. Additionally, compounds 2 and 6 in vitro biotransformation showed that primarily their hydroxylated or O‐dealkylated metabolites are formed. Some of the compounds exhibited intrinsic clearance values lower than those reported previously for antidepressant imipramine. To sum up, the results of the present study might represent a valuable step in designing and planning future studies with piperazine derivatives.


Bioorganic & Medicinal Chemistry Letters | 2016

Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central nervous systems.

Anna M. Waszkielewicz; Monika Kubacka; Katarzyna Pańczyk; Szczepan Mogilski; Agata Siwek; Monika Głuch-Lutwin; Anna Gryboś; Barbara Filipek

In the search for new hypotensive agents some new aroxyalkyl or aroxyethoxyethyl derivatives of piperazine have been synthesized and evaluated for their pharmacological properties. Pharmacological tests included receptor binding assays toward adrenergic receptors α1, α2 and β1, additionally 5-HT1A, functional bioassay and in vivo evaluation of hypotensive activity as well as antidepressant-like potential. All the tested compounds exhibited α1-antagonistic properties, three of them possessed also hypotensive activity in rats. The most promising compound 3 1-[4-(2,6-dimethylphenoxy)butyl]-4-(2-methoxyphenyl)piperazine hydrochloride was a selective α1 receptor antagonist (Ki=23.5±1.3, α1/α2=15.77, pKB=8.538±0.109). It was active in all tested doses in vivo (1, 0.5, and 0.1mg/kg) and it reduced blood pressure by 10-13% at the dose of 1mg/kg (rats, i.v.). Compound 5 1-[2-(2,3-dimethylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine dihydrochloride exhibited the lowest dose for antidepressant-like activity 5mg/kgb.w. (mice, i.p.) without influence on spontaneous activity (mice, i.p.).


The Journal of Antibiotics | 2018

Anti-Helicobacter pylori activities of selected N-substituted cinnamamide derivatives evaluated on reference and clinical bacterial strains

Karolina Klesiewicz; Elżbieta Karczewska; Paweł Nowak; Iwona Skiba-Kurek; Edward Sito; Katarzyna Pańczyk; Paulina Koczurkiewicz; Dorota Żelaszczyk; Elżbieta Pękala; Anna M. Waszkielewicz; Alicja Budak; Henryk Marona; Agnieszka Gunia-Krzyżak

In this study, thirty-five N-substituted derivatives of cinnamic acid amide (cinnamamide) were evaluated for anti-Helicobacter pylori activity using an agar disc-diffusion method. Qualitative screening was performed on a reference H. pylori strain (ATCC 43504), resulting in the identification of the three most active compounds, 8 (R,S-(2E)-3-(4-chlorophenyl)-N-(2-hydroxypropyl)prop-2-enamide, minimal inhibitory concentration, MIC = 7.5 µg/mL), 23 ((2E)-3-(4-chlorophenyl)-N-(2-hydroxycyclohexyl)prop-2-enamide, MIC = 10 µg/mL), and 28 ((2E)-3-(4-chlorophenyl)-N-(4-oxocyclohexyl)prop-2-enamide, MIC = 10 µg/mL). These compounds were further tested on twelve well-characterized clinical strains, yielding MIC values that ranged from 10 to 1000 µg/mL. Preliminary safety assessments of the compounds were made using the MTT viability test for cytotoxicity and Ames test for mutagenicity, which showed them to be generally safe, although compounds 8 and 28 showed mutagenic activity at some of the tested concentrations. The results of this study showed the anti-H. pylori potential of cinnamamide derivatives.


MedChemComm | 2018

Synthesis and anticonvulsant activity of phenoxyacetyl derivatives of amines, including aminoalkanols and amino acids

Katarzyna Pańczyk; Dorota Żelaszczyk; Paulina Koczurkiewicz; Karolina Słoczyńska; Elżbieta Pękala; Ewa Żesławska; Wojciech Nitek; Paweł Żmudzki; Henryk Marona; Anna M. Waszkielewicz

A series of 17 new phenoxyacetamides has been prepared via multistep chemical synthesis as a continuation of the research carried out by our group on di- and tri-substituted phenoxyalkyl and phenoxyacetyl derivatives of amines. The obtained compounds vary in an amide component, for example aminoalkanol or (un)modified amino acid moieties were introduced. The structures of selected products were confirmed by means of crystallographic methods. All 17 compounds were the subject of preliminary screening for potential anticonvulsant activity (MES, 6 Hz and/or scMET tests) and neurotoxicity (rotarod) in mice after intraperitoneal administration, while several active compounds were subsequently examined in additional models (e.g. MES and rotarod - rats, p.o. or i.p., hippocampal kindling - rats, i.p.). Finally, safety studies (cytotoxicity and cell proliferation assays on astrocytes, metabolic stability assessment, mutagenicity evaluation) were performed for several active compounds, including the most promising one (R-(-)-2-(2,6-dimethylphenoxy)-N-(1-hydroxypropan-2-yl)acetamide, MES ED50 = 12.00 mg per kg b.w., rats, p.o.).


Frontiers in Pharmacology | 2018

HBK-17, a 5-HT1A Receptor Ligand With Anxiolytic-Like Activity, Preferentially Activates ß-Arrestin Signaling

Karolina Pytka; Monika Głuch-Lutwin; Elżbieta Żmudzka; Kinga Sałaciak; Agata Siwek; Katarzyna Niemczyk; Maria Walczak; Magdalena Smolik; Adrian Olczyk; Adam Galuszka; Jarosław Śmieja; Barbara Filipek; Jacek Sapa; Marcin Kołaczkowski; Katarzyna Pańczyk; Anna M. Waszkielewicz; Henryk Marona

Numerous studies have proven that both stimulation and blockade of 5-HT1A and the blockade of 5-HT7 receptors might cause the anxiolytic-like effects. Biased agonists selectively activate specific signaling pathways. Therefore, they might offer novel treatment strategies. In this study, we investigated the anxiolytic-like activity, as well as the possible mechanism of action of 1-[(2,5-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-17). In our previous experiments, HBK-17 showed high affinity for 5-HT1A and 5-HT7 receptors and antidepressant-like properties. We performed the four plate test and the elevated plus maze test to determine anxiolytic-like activity. Toward a better understanding of the pharmacological properties of HBK-17 we used various functional assays to determine its intrinsic activity at 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors and UHPLC-MS/MS method to evaluate its pharmacokinetic profile. We observed the anxiolytic-like activity of HBK-17 in both behavioral tests and the effect was reversed by the pretreatment with WAY-100635, which proves that 5-HT1A receptor activation was essential for the anxiolytic-like effect. Moreover, the compound moderately antagonized D2, weakly 5-HT7 and very weakly 5-HT2A receptors. We demonstrated that HBK-17 preferentially activated ß-arrestin signaling after binding to the 5-HT1A receptor. HBK-17 was rapidly absorbed after intraperitoneal administration and had a half-life of about 150 min. HBK-17 slightly penetrated the peripheral compartment and showed bioavailability of approximately 45%. The unique pharmacological profile of HBK-17 encourages further experiments to understand its mechanism of action fully.


Bioorganic & Medicinal Chemistry Letters | 2018

Synthesis and activity of di- or trisubstituted N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives on the central nervous system

Katarzyna Pańczyk; Karolina Pytka; Magdalena Jakubczyk; Anna Rapacz; Kinga Sałat; Anna Furgała; Agata Siwek; Monika Głuch-Lutwin; Anna Gryboś; Karolina Słoczyńska; Elżbieta Pękala; Paweł Żmudzki; Adam Bucki; Marcin Kołaczkowski; Dorota Żelaszczyk; Henryk Marona; Anna M. Waszkielewicz

Aim of the study was evaluation of anxiolytic, antidepressant, anticonvulsant and analgesic activity in a series of a consistent group of compounds. A series of eleven new N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives has been obtained. Their affinity towards 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and α1 receptors has been assessed, and then functional assays were performed. The compounds were evaluated in mice, i.p. for their antidepressant-like (forced swim test), locomotor, anxiolytic-like (four-plate test) activities as well as - at higher doses - for anticonvulsant potential (MES) and neurotoxicity (rotarod). Two compounds (3, 6) were also evaluated for their analgesic activity in neuropathic pain models (streptozocin test, oxaliplatin test) and they were found active against allodynia in diabetic neuropathic pain at 30 mg/kg. Among the compounds, anxiolytic-like, anticonvulsant or analgesic activity was observed but antidepressant-like activity was not. One of the two most interesting compounds is 1-{2-[2-(2,4,6-trimethylphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazine dihydrochloride (9), exhibiting anxiolytic and anticonvulsant activity in mice, i.p. 30 min after administration (at 2.5 mg/kg and ED50 = 26.33 mg/kg, respectively), which can be justified by the receptor profile: 5-HT1A Ki = 5 nM (antagonist), 5-HT7 Ki = 70 nM, α1 Ki = 15 nM, D2 Ki = 189 nM (antagonist). Another interesting compound is 1-[3-(2,4,6-trimethylphenoxy)propyl]-4-(4-methoxyphenyl)piperazine dihydrochloride (3), exhibiting anxiolytic, anticonvulsant and antiallodynic activity in mice, i.p., 30 min after administration (at 10 mg/kg, ED50 = 23.50 mg/kg, at 30 mg/kg, respectively), which can be related with 5-HT1A weak antagonism (Ki = 146 nM), or other possible mechanism of action, not evaluated within presented study. Additionally, for the most active compound in the four-plate test (7), molecular modeling was performed (docking to receptors 5-HT1A, 5-HT2A, 5-HT7, D2 and α1A).


Bioorganic & Medicinal Chemistry | 2018

Design, synthesis and cardiovascular evaluation of some aminoisopropanoloxy derivatives of xanthone

Monika Kubacka; Natalia Szkaradek; Szczepan Mogilski; Katarzyna Pańczyk; Agata Siwek; Anna Gryboś; Barbara Filipek; Paweł Żmudzki; Henryk Marona; Anna M. Waszkielewicz

A series of aminoisopropanoloxy derivatives of xanthone has been synthesized and their pharmacological properties regarding the cardiovascular system has been evaluated. Radioligand binding and functional studies in isolated organs revealed that title compounds present high affinity and antagonistic potency for α1-(compound 2 and 8), β-(compounds 1, 3, 4, 7), α1/β-(compounds 5 and 6) adrenoceptors. Furthermore, compound 7, the structural analogue of verapamil, possesses calcium entry blocking activity. The title compounds showed hypotensive and antiarrhythmic properties due to their adrenoceptor blocking effect. Moreover, they did not affect QRS and QT intervals, and they did not have proarrhythmic potential at tested doses. In addition they exerted anti-aggregation effect. The results of this study suggest that new compounds with multidirectional activity in cardiovascular system might be found in the group of xanthone derivatives.

Collaboration


Dive into the Katarzyna Pańczyk's collaboration.

Top Co-Authors

Avatar

Anna M. Waszkielewicz

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Henryk Marona

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Elżbieta Pękala

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Agata Siwek

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Gunia-Krzyżak

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Barbara Filipek

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Dorota Żelaszczyk

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Karolina Słoczyńska

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Anna Gryboś

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Anna Rapacz

Jagiellonian University Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge