Kate Ching-Ju Lin
National Chiao Tung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kate Ching-Ju Lin.
acm special interest group on data communication | 2011
Kate Ching-Ju Lin; Shyamnath Gollakota; Dina Katabi
This paper presents the design and implementation of 802.11n+, a fully distributed random access protocol for MIMO networks. 802.11n+ allows nodes that differ in the number of antennas to contend not just for time, but also for the degrees of freedom provided by multiple antennas. We show that even when the medium is already occupied by some nodes, nodes with more antennas can transmit concurrently without harming the ongoing transmissions. Furthermore, such nodes can contend for the medium in a fully distributed way. Our testbed evaluation shows that even for a small network with three competing node pairs, the resulting system about doubles the average network throughput. It also maintains the random access nature of todays 802.11n networks.
acm/ieee international conference on mobile computing and networking | 2008
Kate Ching-Ju Lin; Nate Kushman; Dina Katabi
Current wireless protocols retransmit any packet that fails the checksum test, even when most of the bits are correctly received. Prior work has recognized this inefficiency, however the proposed solutions (e.g., PPR, HARQ and SOFT) require changes to the hardware and physical layer, and hence are not usable in todays WLANs and mesh networks. They are further tested in channels with fixed modulation and coding, whereas production 802.11 networks adapt their modulation and codes to maximize their ability to correct erroneous bits. This paper makes two key contributions: 1) it introduces ZipTx, a software-only solution that harvests the gains from using correct bits in corrupted packets using existing hardware, and 2) it characterizes the true gains of partially correct packets for the entire range of operation of 802.11 networks, and in the presence of adaptive modulation and error correcting codes. We implement ZipTx as a driver extension and evaluate our implementation in both outdoor and indoor environments, showing that ZipTx significantly improves the throughput.
international conference on computer communications | 2009
Chih-Cheng Hsu; Kuang-Fu Lai; Cheng-Fu Chou; Kate Ching-Ju Lin
Underwater sensor networks (UWSNs) have attracted a lot of attention recently. Since data in UWSNs are transmitted by acoustic signals, the characteristics of a UWSN are different from those of a terrestrial sensor network. In other words, the high propagation delay of acoustic signals in UWSNs causes spatial-temporal uncertainty, and makes transmission scheduling in UWSNs a challenging problem. Hence, in this paper, we propose a spatial-temporal MAC scheduling protocol, called ST-MAC, which is designed to overcome spatial-temporal uncertainty based on TDMA-based MAC scheduling for energy saving and throughput improvement. We construct the spatial-temporal conflict graph (ST-CG) to describe the conflict delays among transmission links explicitly, and model ST-MAC as a new vertex coloring problem of ST-CG. We then propose a novel heuristic, called the traffic-based one-step trial approach (TOTA), to solve the coloring problem. In order to obtain the optimal solution of the scheduling problem, we also derive a mixed integer linear programming (MILP) model. Finally, we present a comprehensive performance study via simulations. The results show that ST-MAC can perform better than existing MAC schemes (such as S-MAC, ECDiG, and T-Lohi) in terms of the network throughput and energy cost.
international conference on computer communications | 2012
Kate Ching-Ju Lin; Chun-Wei Chen; Cheng-Fu Chou
As mobile devices have become more ubiquitous, mobile users increasingly expect to utilize proximity-based connectivity, e.g., WiFi and Bluetooth, to opportunistically share multimedia content based on their personal preferences. However, many previous studies investigate content dissemination protocols that distribute a single object to as many users in an opportunistic mobile social network as possible without considering user preference. In this paper, we propose PrefCast, a preference-aware content dissemination protocol that targets on maximally satisfying user preference for content objects. Due to non-persistent connectivity between users in a mobile social network, when a user meets neighboring users for a limited contact duration, it needs to efficiently disseminate a suitable set of objects that can bring possible future contacts a high utility (the quantitative metric of preference satisfaction). We formulate such a problem as a maximum-utility forwarding model, and propose an algorithm that enables each user to predict how much utility it can contribute to future contacts and solve its optimal forwarding schedule in a distributed manner. Our trace-based evaluation shows that PrefCast can produce a 18.5% and 25.2% higher average utility than the protocols that only consider contact frequency or preference of local contacts, respectively.
international conference on mobile systems, applications, and services | 2015
Hui-Yu Lee; Hao-Min Lin; Yu-Lin Wei; Hsin-I Wu; Hsin-Mu Tsai; Kate Ching-Ju Lin
Recent literatures have demonstrated the feasibility and applicability of light-to-camera communications. They either use this new technology to realize specific applications, e.g., localization, by sending repetitive signal patterns, or consider non-line-of-sight scenarios. We however notice that line-of-sight light-to-camera communications has a great potential because it provides a natural way to enable visual association, i.e., visually associating the received information with the transmitters identity. Such capability benefits broader applications, such as augmented reality, advertising, and driver assistance systems. Hence, this paper designs, implements, and evaluates RollingLight, a line-of-sight light-to-camera communication system that enables a light to talk to diverse off-the-shelf rolling shutter cameras. To boost the data rate and enhance reliability, RollingLight addresses the following practical challenges. First, its demodulation algorithm allows cameras with heterogeneous sampling rates to accurately decode high-order frequency modulation in real-time. Second, it incorporates a number of designs to resolve the issues caused by inherently unsynchronized light-to-camera channels. We have built a prototype of RollingLight with USRP-N200, and also implemented a real system with Arduino Mega 2560, both tested with a range of different camera receivers. We also implement a real iOS application to examine our real-time decoding capability. The experimental results show that, even to serve commodity cameras with a large variety of frame rates, RollingLight can still deliver a throughput of 11.32 bytes per second.
ieee international conference computer and communications | 2016
Tung-Wei Kuo; Bang-Heng Liou; Kate Ching-Ju Lin; Ming-Jer Tsai
Recently, Network Function Virtualization (NFV) has been proposed to transform from network hardware appliances to software middleboxes. Normally, a demand needs to invoke several Virtual Network Functions (VNFs) in a particular order following the service chain along a routing path. In this paper, we study the joint problem of VNF placement and path selection to better utilize the network. We discover that the relation between the link and server usage plays a crucial role in the problem. We first propose a systematic way to elastically tune the proper link and server usage of each demand based on network conditions and demand properties. In particular, we compute a proper routing path length, and decide, for each VNF in the service chain, whether to use additional server resources or to reuse resources provided by existing servers. We then propose a chain deployment algorithm to follow the guidance of this link and server usage. Via simulations, we show that our design effectively adapts resource usage to network dynamics, and, hence, serves more demands than other heuristics.
IEEE Transactions on Mobile Computing | 2014
Wei-Liang Shen; Chung-Shiuan Chen; Kate Ching-Ju Lin; Kien A. Hua
Mobile ad hoc networks (MANETs) are ideal for situations where a fixed infrastructure is unavailable or infeasible. Todays MANETs, however, may suffer from network partitioning. This limitation makes MANETs unsuitable for applications such as crisis management and battlefield communications, in which team members might need to work in groups scattered in the application terrain. In such applications, intergroup communication is crucial to the team collaboration. To address this weakness, we introduce in this paper a new class of ad-hoc network called Autonomous Mobile Mesh Network (AMMNET). Unlike conventional mesh networks, the mobile mesh nodes of an AMMNET are capable of following the mesh clients in the application terrain, and organizing themselves into a suitable network topology to ensure good connectivity for both intra- and intergroup communications. We propose a distributed client tracking solution to deal with the dynamic nature of client mobility, and present techniques for dynamic topology adaptation in accordance with the mobility pattern of the clients. Our simulation results indicate that AMMNET is robust against network partitioning and capable of providing high relay throughput for the mobile clients.
IEEE Transactions on Mobile Computing | 2014
Wei-Liang Shen; Kate Ching-Ju Lin; Shyamnath Gollakota; Ming-Syan Chen
In multiuser MIMO (MU-MIMO) networks, the optimal bit rate of a user is highly dynamic and changes from one packet to the next. This breaks traditional bit rate adaptation algorithms, which rely on recent history to predict the best bit rate for the next packet. To address this problem, we introduce TurboRate, a rate adaptation scheme for MU-MIMO LANs. TurboRate shows that clients in an MU-MIMO LAN can adapt their bit rate on a per-packet basis if each client learns two variables: Its SNR when it transmits alone to the access point, and the direction along which its signal is received at the AP. TurboRate also shows that each client can compute these two variables passively without exchanging control frames with the access point. A TurboRate client then annotates its packets with these variables to enable other clients to pick the optimal bit rate and transmit concurrently to the AP. A prototype implementation in USRP-N200 shows that traditional rate adaptation does not deliver the gains of MU-MIMO WLANs, and can interact negatively with MU-MIMO, leading to low throughput. In contrast, enabling MU-MIMO with TurboRate provides a mean throughput gain of 1.7× and 2.3×, for 2-antenna and 3-antenna APs, respectively.
IEEE Transactions on Wireless Communications | 2014
Tung-Wei Kuo; Kuang-Che Lee; Kate Ching-Ju Lin; Ming-Jer Tsai
In multiuser MIMO (MU-MIMO) LANs, the achievable throughput of a client depends on who is transmitting concurrently with it. Existing MU-MIMO MAC protocols, however, enable clients to use the traditional 802.11 contention to contend for concurrent transmission opportunities on the uplink. Such a contention-based protocol not only wastes lots of channel time on multiple rounds of contention but also fails to maximally deliver the gain of MU-MIMO because users randomly join concurrent transmissions without considering their channel characteristics. To address such inefficiency, this paper introduces MIMOMate, a leader-contention-based MU-MIMO MAC protocol that matches clients as concurrent transmitters according to their channel characteristics to maximally deliver the MU-MIMO gain while ensuring all users fairly share concurrent transmission opportunities. Furthermore, MIMOMate elects the leader of the matched users to contend for transmission opportunities using traditional 802.11 CSMA/CA. It hence requires only a single contention overhead for concurrent streams and can be compatible with legacy 802.11 devices. A prototype implementation in USRP N200 shows that MIMOMate achieves an average throughput gain of 1.42× and
IEEE Transactions on Mobile Computing | 2013
Kate Ching-Ju Lin; Wei-Liang Shen; Chih-Cheng Hsu; Cheng-Fu Chou
1.52× over the traditional contention-based protocol for two- and three-antenna AP scenarios, respectively, and also provides fairness for clients.