Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Downes is active.

Publication


Featured researches published by Kate Downes.


Nature Genetics | 2007

Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes

John A. Todd; Neil M Walker; Jason D. Cooper; Deborah J. Smyth; Kate Downes; Vincent Plagnol; Rebecca Bailey; Sergey Nejentsev; Sarah Field; Felicity Payne; Christopher E. Lowe; Jeffrey S. Szeszko; Jason P. Hafler; Lauren Zeitels; Jennie H. M. Yang; Adrian Vella; Sarah Nutland; Helen Stevens; Helen Schuilenburg; Gillian Coleman; Meeta Maisuria; William Meadows; Luc J. Smink; Barry Healy; Oliver Burren; Alex C. Lam; Nigel R Ovington; James E Allen; Ellen C. Adlem; Hin-Tak Leung

The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan on seven diseases, including the multifactorial autoimmune disease type 1 diabetes (T1D), shows associations at P < 5 × 10−7 between T1D and six chromosome regions: 12q24, 12q13, 16p13, 18p11, 12p13 and 4q27. Here, we attempted to validate these and six other top findings in 4,000 individuals with T1D, 5,000 controls and 2,997 family trios independent of the WTCCC study. We confirmed unequivocally the associations of 12q24, 12q13, 16p13 and 18p11 (Pfollow-up ≤ 1.35 × 10−9; Poverall ≤ 1.15 × 10−14), leaving eight regions with small effects or false-positive associations. We also obtained evidence for chromosome 18q22 (Poverall = 1.38 × 10−8) from a GWA study of nonsynonymous SNPs. Several regions, including 18q22 and 18p11, showed association with autoimmune thyroid disease. This study increases the number of T1D loci with compelling evidence from six to at least ten.


The New England Journal of Medicine | 2008

Shared and Distinct Genetic Variants in Type 1 Diabetes and Celiac Disease

Deborah J. Smyth; Vincent Plagnol; Neil M Walker; Jason D. Cooper; Kate Downes; Jennie H. M. Yang; Joanna M. M. Howson; Helen Stevens; Ross McManus; Cisca Wijmenga; Graham A. Heap; P Dubois; David G. Clayton; Karen A. Hunt; David A. van Heel; John A. Todd

BACKGROUND Two inflammatory disorders, type 1 diabetes and celiac disease, cosegregate in populations, suggesting a common genetic origin. Since both diseases are associated with the HLA class II genes on chromosome 6p21, we tested whether non-HLA loci are shared. METHODS We evaluated the association between type 1 diabetes and eight loci related to the risk of celiac disease by genotyping and statistical analyses of DNA samples from 8064 patients with type 1 diabetes, 9339 control subjects, and 2828 families providing 3064 parent-child trios (consisting of an affected child and both biologic parents). We also investigated 18 loci associated with type 1 diabetes in 2560 patients with celiac disease and 9339 control subjects. RESULTS Three celiac disease loci--RGS1 on chromosome 1q31, IL18RAP on chromosome 2q12, and TAGAP on chromosome 6q25--were associated with type 1 diabetes (P<1.00x10(-4)). The 32-bp insertion-deletion variant on chromosome 3p21 was newly identified as a type 1 diabetes locus (P=1.81x10(-8)) and was also associated with celiac disease, along with PTPN2 on chromosome 18p11 and CTLA4 on chromosome 2q33, bringing the total number of loci with evidence of a shared association to seven, including SH2B3 on chromosome 12q24. The effects of the IL18RAP and TAGAP alleles confer protection in type 1 diabetes and susceptibility in celiac disease. Loci with distinct effects in the two diseases included INS on chromosome 11p15, IL2RA on chromosome 10p15, and PTPN22 on chromosome 1p13 in type 1 diabetes and IL12A on 3q25 and LPP on 3q28 in celiac disease. CONCLUSIONS A genetic susceptibility to both type 1 diabetes and celiac disease shares common alleles. These data suggest that common biologic mechanisms, such as autoimmunity-related tissue damage and intolerance to dietary antigens, may be etiologic features of both diseases.


Nature Genetics | 2008

Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci

Jason D. Cooper; Deborah J. Smyth; Adam M. Smiles; Vincent Plagnol; Neil M Walker; James E Allen; Kate Downes; Jeffrey C. Barrett; Barry Healy; Josyf C. Mychaleckyj; James H. Warram; John A. Todd

We carried out a meta-analysis of data from three genome-wide association (GWA) studies of type 1 diabetes (T1D), testing 305,090 SNPs in 3,561 T1D cases and 4,646 controls of European ancestry. We obtained further support for 4q27 (IL2-IL21, P = 1.9 × 10−8) and, after genotyping an additional 6,225 cases, 6,946 controls and 2,828 families, convincing evidence for four previously unknown and distinct risk loci in chromosome regions 6q15 (BACH2, P = 4.7 × 10−12), 10p15 (PRKCQ, P = 3.7 × 10−9), 15q24 (CTSH, P = 3.2 × 10−15) and 22q13 (C1QTNF6, P = 2.0 × 10−8).


Science | 2014

Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity

Sadia Saeed; Jessica Quintin; Hindrik Hd Kerstens; Nagesha A. Rao; Ali Aghajanirefah; Filomena Matarese; Shih-Chin Cheng; Jacqueline M. Ratter; Kim Berentsen; Martijn van der Ent; Nilofar Sharifi; Eva M. Janssen-Megens; Menno Ter Huurne; Amit Mandoli; Tom van Schaik; Aylwin Ng; Frances Burden; Kate Downes; Mattia Frontini; Vinod Kumar; Evangelos J. Giamarellos-Bourboulis; Willem H. Ouwehand; Jos W. M. van der Meer; Leo A. B. Joosten; Cisca Wijmenga; Joost H.A. Martens; Ramnik J. Xavier; Colin Logie; Mihai G. Netea; Hendrik G. Stunnenberg

Introduction Monocytes circulate in the bloodstream for up to 3 to 5 days. Concomitantly, immunological imprinting of either tolerance (immunosuppression) or trained immunity (innate immune memory) determines the functional fate of monocytes and monocyte-derived macrophages, as observed after infection or vaccination. The epigenome, DNase I accessibility, and transcriptome were characterized in purified human circulating monocytes, in vitro differentiated naïve, tolerized (immunosuppression), and trained macrophages (innate immune memory). This allowed the identification of pathways functionally implicated in innate immune memory. This epigenetic signature of human monocyte-to-macrophage differentiation and monocyte training generates hypotheses to understand and manipulate medically relevant immune conditions. Methods Purified circulating monocytes from healthy volunteers were differentiated under the homeostatic macrophage colony-stimulating factor concentrations present in human serum. During the first 24 hours, trained immunity was induced by β-glucan (BG) priming, and postsepsis immunoparalysis was mimicked by exposure to lipopolysaccharide (LPS), generating endotoxin-induced tolerance. Epigenomic profiling of the histone marks H3K4me1, H3K4me3, and H3K27ac, DNase I accessibility, and RNA sequencing were performed at both the start of the experiment (ex vivo monocytes) and at the end of the 6 days of in vitro culture (macrophages). Results Compared with monocytes (Mo), naïve macrophages (Mf ) display a remodeled metabolic enzyme repertoire and attenuated innate inflammatory pathways, most likely necessary to generate functional tissue macrophages. Epigenetic profiling uncovered about 8000 dynamic regions associated with about 11,000 DNase I hypersensitive sites. Changes in histone acetylation identified most dynamic events. Furthermore, these regions of differential histone marks displayed some degree of DNase I accessibility that was already present in monocytes. H3K4me1 mark increased in parallel with de novo H3K27ac deposition at distal regulatory regions; H3K4me1 mark remained even after the loss of H3K27ac, marking decommissioned regulatory elements. β-glucan priming specifically induced about 3000 distal regulatory elements, whereas LPS tolerization induced H3K27ac at about 500 distal regulatory regions. At the transcriptional level, we identified coregulated gene modules during monocyte-to-macrophage differentiation, as well as discordant modules between trained and tolerized cells. These indicate that training likely involves an increased expression of modules expressed in naïve macrophages, including genes that code for metabolic enzymes. On the other hand, endotoxin tolerance involves gene modules that are more active in monocytes than in naïve macrophages. About 12% of known human transcription factors display variation in expression during macrophage differentiation, training, and tolerance. We also observed transcription factor motifs in DNase I hypersensitive sites at condition-specific dynamic epigenomic regions, implying that specific transcription factors are required for trained and tolerized macrophage epigenetic and transcriptional programs. Finally, our analyses and functional validation indicate that the inhibition of cyclic adenosine monophosphate generation blocked trained immunity in vitro and during an in vivo model of lethal Candida albicans infection, abolishing the protective effects of trained immunity. Discussion We documented the importance of epigenetic regulation of the immunological pathways underlying monocyte-to-macrophage differentiation and trained immunity. These dynamic epigenetic elements may inform on potential pharmacological targets that modulate innate immunity. Altogether, we uncovered the epigenetic and transcriptional programs of monocyte differentiation to macrophages that distinguish tolerant and trained macrophage phenotypes, providing a resource to further understand and manipulate immune-mediated responses. A BLUEPRINT of immune cell development To determine the epigenetic mechanisms that direct blood cells to develop into the many components of our immune system, the BLUEPRINT consortium examined the regulation of DNA and RNA transcription to dissect the molecular traits that govern blood cell differentiation. By inducing immune responses, Saeed et al. document the epigenetic changes in the genome that underlie immune cell differentiation. Cheng et al. demonstrate that trained monocytes are highly dependent on the breakdown of sugars in the presence of oxygen, which allows cells to produce the energy needed to mount an immune response. Chen et al. examine RNA transcripts and find that specific cell lineages use RNA transcripts of different length and composition (isoforms) to form proteins. Together, the studies reveal how epigenetic effects can drive the development of blood cells involved in the immune system. Science, this issue 10.1126/science.1251086, 10.1126/science.1250684, 10.1126/science.1251033 Genome-wide approaches analyze human monocyte differentiation in vitro into functional macrophages. Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro–differentiated naïve, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type–specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans.


Nature Genetics | 2009

Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource

Calliope A. Dendrou; Vincent Plagnol; Erik Fung; Jennie H. M. Yang; Kate Downes; Jason D. Cooper; Sarah Nutland; Gillian Coleman; Matthew Himsworth; Matthew Hardy; Oliver Burren; Barry Healy; Neil M Walker; Kerstin Koch; Willem H. Ouwehand; John R. Bradley; Nicholas J. Wareham; John A. Todd; Linda S. Wicker

Genome-wide association studies (GWAS) have identified over 300 regions associated with more than 70 common diseases. However, identifying causal genes within an associated region remains a major challenge. One approach to resolving causal genes is through the dissection of gene-phenotype correlations. Here we use polychromatic flow cytometry to show that differences in surface expression of the human interleukin-2 (IL-2) receptor alpha (IL2RA, or CD25) protein are restricted to particular immune cell types and correlate with several haplotypes in the IL2RA region that have previously been associated with two autoimmune diseases, type 1 diabetes (T1D) and multiple sclerosis. We confirm our strongest gene-phenotype correlation at the RNA level by allele-specific expression (ASE). We also define key parameters for the design and implementation of post-GWAS gene-phenotype investigations and demonstrate the usefulness of a large bioresource of genotype-selectable normal donors from whom fresh, primary cells can be analyzed.


PLOS Genetics | 2009

IL2RA Genetic Heterogeneity in Multiple Sclerosis and Type 1 Diabetes Susceptibility and Soluble Interleukin-2 Receptor Production

Lisa M. Maier; Christopher E. Lowe; Jason D. Cooper; Kate Downes; David E. Anderson; Christopher Severson; Pamela M. Clark; Brian C. Healy; Neil M Walker; Cristin Aubin; Jorge R. Oksenberg; Stephen L. Hauser; A. Compston; Stephen Sawcer; Philip L. De Jager; Linda S. Wicker; John A. Todd; David A. Hafler

Multiple sclerosis (MS) and type 1 diabetes (T1D) are organ-specific autoimmune disorders with significant heritability, part of which is conferred by shared alleles. For decades, the Human Leukocyte Antigen (HLA) complex was the only known susceptibility locus for both T1D and MS, but loci outside the HLA complex harboring risk alleles have been discovered and fully replicated. A genome-wide association scan for MS risk genes and candidate gene association studies have previously described the IL2RA gene region as a shared autoimmune locus. In order to investigate whether autoimmunity risk at IL2RA was due to distinct or shared alleles, we performed a genetic association study of three IL2RA variants in a DNA collection of up to 9,407 healthy controls, 2,420 MS, and 6,425 T1D subjects as well as 1,303 MS parent/child trios. Here, we report “allelic heterogeneity” at the IL2RA region between MS and T1D. We observe an allele associated with susceptibility to one disease and risk to the other, an allele that confers susceptibility to both diseases, and an allele that may only confer susceptibility to T1D. In addition, we tested the levels of soluble interleukin-2 receptor (sIL-2RA) in the serum from up to 69 healthy control subjects, 285 MS, and 1,317 T1D subjects. We demonstrate that multiple variants independently correlate with sIL-2RA levels.


Human Molecular Genetics | 2010

Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing

Graham A. Heap; Jennie H. M. Yang; Kate Downes; Barry Healy; Karen A. Hunt; Nicholas A. Bockett; Lude Franke; P Dubois; Charles A. Mein; Richard Dobson; Thomas J. Albert; Matthew Rodesch; David G. Clayton; John A. Todd; David A. van Heel; Vincent Plagnol

Many disease-associated variants identified by genome-wide association (GWA) studies are expected to regulate gene expression. Allele-specific expression (ASE) quantifies transcription from both haplotypes using individuals heterozygous at tested SNPs. We performed deep human transcriptome-wide resequencing (RNA-seq) for ASE analysis and expression quantitative trait locus discovery. We resequenced double poly(A)-selected RNA from primary CD4+ T cells (n = 4 individuals, both activated and untreated conditions) and developed tools for paired-end RNA-seq alignment and ASE analysis. We generated an average of 20 million uniquely mapping 45 base reads per sample. We obtained sufficient read depth to test 1371 unique transcripts for ASE. Multiple biases inflate the false discovery rate which we estimate to be ∼50% for random SNPs. However, after controlling for these biases and considering the subset of SNPs that pass HapMap QC, 4.6% of heterozygous SNP-sample pairs show evidence of imbalance (P < 0.001). We validated four findings by both bacterial cloning and Sanger sequencing assays. We also found convincing evidence for allelic imbalance at multiple reporter exonic SNPs in CD6 for two samples heterozygous at the multiple sclerosis-associated variant rs17824933, linking GWA findings with variation in gene expression. Finally, we show in CD4+ T cells from a further individual that high-throughput sequencing of genomic DNA and RNA-seq following enrichment for targeted gene sequences by sequence capture methods offers an unbiased means to increase the read depth for transcripts of interest, and therefore a method to investigate the regulatory role of many disease-associated genetic variants.


Cell | 2016

Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters

Biola-Maria Javierre; Oliver Burren; Steven P. Wilder; Kreuzhuber R; Hill Sm; Sven Sewitz; Jonathan Cairns; Steven W. Wingett; Csilla Várnai; Thiecke Mj; Frances Burden; Samantha Farrow; Antony J. Cutler; Karola Rehnström; Kate Downes; Luigi Grassi; Myrto Kostadima; Paula Freire-Pritchett; Wang F; Hendrik G. Stunnenberg; John A. Todd; Daniel R. Zerbino; Oliver Stegle; Willem H. Ouwehand; Mattia Frontini; Chris Wallace; Mikhail Spivakov; Peter Fraser

Summary Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.


Science | 2014

Transcriptional diversity during lineage commitment of human blood progenitors

Lu Chen; Myrto Kostadima; Joost H.A. Martens; Giovanni Canu; Sara P. Garcia; Ernest Turro; Kate Downes; Iain C. Macaulay; Ewa Bielczyk-Maczyńska; Sophia Coe; Samantha Farrow; Pawan Poudel; Frances Burden; Sjoert B. G. Jansen; William Astle; Antony P. Attwood; Tadbir K. Bariana; Bernard de Bono; Alessandra Breschi; John Chambers; Fizzah Choudry; Laura Clarke; Paul Coupland; Martijn van der Ent; Wendy N. Erber; Joop H. Jansen; Rémi Favier; Matthew Fenech; Nicola S. Foad; Kathleen Freson

Introduction Blood production in humans culminates in the daily release of around 1011 cells into the circulation, mainly platelets and red blood cells. All blood cells originate from a minute population of hematopoietic stem cells (HSCs) that expands and differentiates into progenitor cells with increasingly restricted lineage choice. Characterizing alternative splicing events involved in hematopoiesis is critical for interpreting the effects of mutations leading to inherited disorders and blood cancers and for the rational design of strategies to advance transplantation and regenerative medicine. Overview of methodology. RNA-sequencing reads from human blood progenitors [opaque cells in (A)] were mapped to the transcriptome to quantify gene and transcript expression. Reads were also mapped to the genome to identify novel splice junctions and characterize alternative splicing events (B). Rationale To address this, we explored the transcriptional diversity of human blood progenitors by sequencing RNA from six progenitor and two precursor populations representing the classical myeloid commitment stages of hematopoiesis and the main lymphoid stage. Data were aligned to the human reference transcriptome and genome to quantify known transcript isoforms and to identify novel splicing events, respectively. We used Bayesian polytomous model selection to classify transcripts into distinct expression patterns across the three cell types that comprise each differentiation step. Results We identified extensive transcriptional changes involving 6711 genes and 10,724 transcripts and validated a number of these. Many of the changes at the transcript isoform level did not result in significant changes at the gene expression level. Moreover, we identified transcripts unique to each of the progenitor populations, observing enrichment in non–protein-coding elements at the early stages of differentiation. We discovered 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes and often resulting in the gain or loss of functional domains. Of the alternative splice sites displaying differential usage, 73% resulted in exon-skipping events involving at least one protein domain (38.5%) or introducing a premature stop codon (26%). Enrichment analysis of RNA-binding motifs provided insights into the regulation of cell type–specific splicing events. To demonstrate the importance of specific isoforms in driving lineage fating events, we investigated the role of a transcription factor highlighted by our analyses. Our data show that nuclear factor I/B (NFIB) is highly expressed in megakaryocytes and that it is transcribed from an unannotated transcription start site preceding a novel exon. The novel NFIB isoform lacks the DNA binding/dimerization domain and therefore is unable to interact with its binding partner, NFIC. We further show that NFIB and NFIC are important in megakaryocyte differentiation. Conclusion We produced a quantitative catalog of transcriptional changes and splicing events representing the early progenitors of human blood. Our analyses unveil a previously undetected layer of regulation affecting cell fating, which involves transcriptional isoforms switching without noticeable changes at the gene level and resulting in the gain or loss of protein functions. A BLUEPRINT of immune cell development To determine the epigenetic mechanisms that direct blood cells to develop into the many components of our immune system, the BLUEPRINT consortium examined the regulation of DNA and RNA transcription to dissect the molecular traits that govern blood cell differentiation. By inducing immune responses, Saeed et al. document the epigenetic changes in the genome that underlie immune cell differentiation. Cheng et al. demonstrate that trained monocytes are highly dependent on the breakdown of sugars in the presence of oxygen, which allows cells to produce the energy needed to mount an immune response. Chen et al. examine RNA transcripts and find that specific cell lineages use RNA transcripts of different length and composition (isoforms) to form proteins. Together, the studies reveal how epigenetic effects can drive the development of blood cells involved in the immune system. Science, this issue 10.1126/science.1251086, 10.1126/science.1250684, 10.1126/science.1251033 RNA sequencing identifies how different cell fate decisions are made during blood cell differentiation. Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type–specific expression changes: 6711 genes and 10,724 transcripts, enriched in non–protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation—the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.


Journal of Immunology | 2012

Type 1 Diabetes-Associated IL2RA Variation Lowers IL-2 Signaling and Contributes to Diminished CD4+CD25+ Regulatory T Cell Function

Garima Garg; Jennifer R. Tyler; Jennie H. M. Yang; Antony J. Cutler; Kate Downes; Marcin L. Pekalski; Gwynneth L. Bell; Sarah Nutland; Mark Peakman; John A. Todd; Linda S. Wicker; Timothy Tree

Numerous reports have demonstrated that CD4+CD25+ regulatory T cells (Tregs) from individuals with a range of human autoimmune diseases, including type 1 diabetes, are deficient in their ability to control autologous proinflammatory responses when compared with nondiseased, control individuals. Treg dysfunction could be a primary, causal event or may result from perturbations in the immune system during disease development. Polymorphisms in genes associated with Treg function, such as IL2RA, confer a higher risk of autoimmune disease. Although this suggests a primary role for defective Tregs in autoimmunity, a link between IL2RA gene polymorphisms and Treg function has not been examined. We addressed this by examining the impact of an IL2RA haplotype associated with type 1 diabetes on Treg fitness and suppressive function. Studies were conducted using healthy human subjects to avoid any confounding effects of disease. We demonstrated that the presence of an autoimmune disease-associated IL2RA haplotype correlates with diminished IL-2 responsiveness in Ag-experienced CD4+ T cells, as measured by phosphorylation of STAT5a, and is associated with lower levels of FOXP3 expression by Tregs and a reduction in their ability to suppress proliferation of autologous effector T cells. These data offer a rationale that contributes to the molecular and cellular mechanisms through which polymorphisms in the IL-2RA gene affect immune regulation, and consequently upon susceptibility to autoimmune and inflammatory diseases.

Collaboration


Dive into the Kate Downes's collaboration.

Top Co-Authors

Avatar

John A. Todd

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry Healy

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge