Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Howell is active.

Publication


Featured researches published by Kate Howell.


Science | 2009

Protection of C. elegans from anoxia by HYL-2 ceramide synthase

Vincent Menuz; Kate Howell; Sébastien Gentina; Sharon Epstein; Isabelle Riezman; Monique Fornallaz-Mulhauser; Michael O. Hengartner; Marie Gomez; Howard Riezman; Jean-Claude Martinou

Oxygen deprivation is rapidly deleterious for most organisms. However, Caenorhabditis elegans has developed the ability to survive anoxia for at least 48 hours. Mutations in the DAF-2/DAF-16 insulin-like signaling pathway promote such survival. We describe a pathway involving the HYL-2 ceramide synthase that acts independently of DAF-2. Loss of the ceramide synthase gene hyl-2 results in increased sensitivity of C. elegans to anoxia. C. elegans has two ceramide synthases, hyl-1 and hyl-2, that participate in ceramide biogenesis and affect its ability to survive anoxic conditions. In contrast to hyl-2(lf) mutants, hyl-1(lf) mutants are more resistant to anoxia than normal animals. HYL-1 and HYL-2 have complementary specificities for fatty acyl chains. These data indicate that specific ceramides produced by HYL-2 confer resistance to anoxia.


Applied and Environmental Microbiology | 2005

Genetic Determinants of Volatile-Thiol Release by Saccharomyces cerevisiae during Wine Fermentation

Kate Howell; Mathias Klein; Jan H. Swiegers; Yoji Hayasaka; Gordon M. Elsey; Graham H. Fleet; P. B. Høj; Isak S. Pretorius; Miguel A. de Barros Lopes

ABSTRACT Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens.


Letters in Applied Microbiology | 2004

Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation

Kate Howell; Eveline J. Bartowsky; Graham H. Fleet; Paul A. Henschke

Aims:  Use of microsatellite PCR to monitor populations of Saccharomyces cerevisiae strains during fermentation of grape juice.


Critical Reviews in Food Science and Nutrition | 2017

Complexity and health functionality of plant cell wall fibers from fruits and vegetables

A. Padayachee; Li Day; Kate Howell; Michael J. Gidley

ABSTRACT The prevalence of lifestyle-related diseases is increasing in developing countries with the causes for death starting to follow the same pattern in the developed world. Lifestyle factors including inadequate dietary intake of fruits and vegetables and over consumption of nutrient-poor processed foods, are considered to be major causal risk factors associated with increased susceptibility to developing certain diseases (Alldrick, 1998; Kiani, 2007). Recent epidemiological evidence confirms a strong association between dietary fiber and reduced all-cause mortality risk, as well as a risk reduction for a number of non-communicable diseases (Chuang et al., 2012). The relationship between dietary fiber and mortality has been described as “convincing observations that call for mechanistic investigations” (Landberg, 2012). In particular, the health protective roles played by dietary fibers of different origin are not well understood. Whilst Hippocrates was the earliest known physician to study the health benefits of fiber derived from grains (Burkitt, 1987), the functionality of fruit and vegetable fiber, especially in association with other compounds such as polyphenols and carotenoids, is an area of more recent interest. Hence the objective of this review is to assess the complexity and health-related functional role of plant cell wall (PCW) fibers from fruits and vegetables with a particular emphasis on interactions between cell walls and phytonutrients.


Developments in food science | 2006

Modulation of volatile thiol and ester aromas by modified wine yeast

Jan H. Swiegers; Robyn Willmott; Alana Hill-Ling; Dimitra L. Capone; Kevin H. Pardon; Gordon M. Elsey; Kate Howell; Miguel A. de Barros Lopes; Mark A. Sefton; Mariska Lilly; Isak S. Pretorius

The volatile thiols, in particular 4-mercapto-4-methylpentan-2-one (4MMP), 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) are potent aroma shown to contribute strongly to the varietal aroma of Sauvignon Blanc wines. The thiols 4MMP and 3MH exist as non-volatile, aroma-inactive cysteine bound conjugates in the grape must and during fermentation the thiol is cleaved from the precursor. However, no cysteine conjugate for 3MHA has been identified. In this work we showed that 3MHA is formed from 3MH by the wine yeast Saccharomyces cerevisiae during fermentation. Furthermore, the alcohol acetyltransferase, Atf1p, the enzyme involved in the formation of the ester ethyl acetate, was shown to be the main enzyme responsible for the formation of 3MHA. Both a laboratory yeast and a commercial wine yeast overexpressing the ATF1 gene produced significantly more 3MHA than the wild-type. Although an atf1Δ laboratory yeast strain showed reduced 3MHA formation, it was not abolished, indicating that other enzymes are also responsible for its formation. Therefore, overexpression of the ATF1 gene in a wine yeast presents the possiblity of modulating both the thiol and ester aromas in wine.


Journal of Agricultural and Food Chemistry | 2015

Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz

Pangzhen Zhang; Snow Barlow; Mark Krstic; Markus Herderich; Sigfredo Fuentes; Kate Howell

This study characterizes the environmental factors driving rotundone concentrations in grape berries by quantifying rotundone variability and correlating it with viticultural parameters. Dissection of the vineyard into distinct zones (on the basis of vigor, electrical soil conductivity, and slope), vine into orientations to sun (shaded/unshaded), and grape bunches into sectors (upper and lower and front and back) shows the influence of vine vigor, sunlight, and temperature. Occurrence of the highest rotundone concentration was observed in shaded bunch sectors and vines and from higher vigor vines in the southern-facing areas of the vineyard. The highest concentration of rotundone is consistently found at the top and in shaded sectors of bunches, and this correlates to lower grape surface temperatures. Modeling showed that berry temperature exceeding 25 °C negatively affects the rotundone concentration in Shiraz. Both natural and artificial shading modulated the grape surface and air temperature at the bunch zone and increased the rotundone concentration, without affecting other grape berry quality parameters. Thus, temperature and possibly sunlight interception are the main determinants of rotundone in grape berries. Vineyard topography, vine vigor, vine row, and grape bunch orientation influence the level of berry shading and can, therefore, adjust bunch surface and zone temperatures and influence the berry rotundone concentration.


International Journal of Food Microbiology | 2013

Biodiversity, dynamics and ecology of bacterial community during grape marc storage for the production of grappa

Petros Maragkoudakis; Tiziana Nardi; Barbara Bovo; Maura D'Andrea; Kate Howell; Alessio Giacomini; Viviana Corich

The Italian spirit obtained from grape marc, grappa, is produced by an extended storage of the marc which allows alcoholic fermentation. Bacterial populations can develop and are associated with off-flavour production. Grape marc acidification before storage is a common practice in distilleries to control bacterial proliferation. Few studies have been published on the microbial biodiversity in grape marc and no information exists about microbiology of acidified marcs and physiological properties needed for colonizing such an environment. The aim of this study was to investigate the composition and dynamics of grape marc bacterial populations during the long-period storage by microbiological analyses of acidified and untreated marcs. Eight bacterial species were identified by ARDRA - 16s rRNA sequencing at the beginning of the fermentation. Among them the bacterial species of Tatumella terrea, Acetobacter ghanensis and Tatumella ptyseos were identified for the first time in a wine environment. In later stages Oenococcus oeni and members of the Lactobacillus plantarum group became dominant in acidified and non-acidified grape marc, respectively. Further molecular typing of L. plantarum isolates yielded 39 strains. To explain the prevalence of L. plantarum in untreated samples, all strains were tested for potential antimicrobial activity and for biofilm formation ability. Although no antimicrobial activity was found, many strains exhibited the ability to form a biofilm, which may confer an ecological advantage to these strains and their dominance during marc storage.


Journal of Biological Chemistry | 2008

Identifying Key Residues of Sphinganine-1-phosphate Lyase for Function in Vivo and in Vitro

Debdyuti Mukhopadhyay; Kate Howell; Howard Riezman; Guido Capitani

Sphinganine-1-phosphate lyase (Dpl1p) is a highly conserved enzyme of sphingolipid metabolism that catalyzes the irreversible degradation of sphingoid base phosphates, which are potent signaling molecules. Sphingoid base phosphates play a vital role in cell survival, proliferation, migration, heat stress, and cell wall integrity pathways. Little is known about the structure and regulation of Dpl1p. In this study, we have undertaken a combined computational modeling and mutagenesis approach for structure-function analysis of Dpl1p to discover possible modes of regulation. Our results identify important residues for catalysis in Dpl1p and confirm it as an integral endoplasmic reticulum-resident protein. Results further indicate that Dpl1p is most likely not regulated spatially. Importantly, we demonstrate that Dpl1p exists as an oligomer and that polar residues in its transmembrane domain are required for its full function in vivo but not for its localization or for its catalytic activity in vitro.


PLOS ONE | 2015

Environmental Factors and Seasonality Affect the Concentration of Rotundone in Vitis vinifera L. cv. Shiraz Wine

Pangzhen Zhang; Kate Howell; Mark Krstic; Markus Herderich; E. W. R. Barlow; Sigfredo Fuentes

Rotundone is a sesquiterpene that gives grapes and wine a desirable ‘peppery’ aroma. Previous research has reported that growing grapevines in a cool climate is an important factor that drives rotundone accumulation in grape berries and wine. This study used historical data sets to investigate which weather parameters are mostly influencing rotundone concentration in grape berries and wine. For this purpose, wines produced from 15 vintages from the same Shiraz vineyard (The Old Block, Mount Langi Ghiran, Victoria, Australia) were analysed for rotundone concentration and compared to comprehensive weather data and minimal temperature information. Degree hours were obtained by interpolating available temperature information from the vineyard site using a simple piecewise cubic hermite interpolating polynomial method (PCHIP). Results showed that the highest concentrations of rotundone were consistently found in wines from cool and wet seasons. The Principal Component Analysis (PCA) showed that the concentration of rotundone in wine was negatively correlated with daily solar exposure and grape bunch zone temperature, and positively correlated with vineyard water balance. Finally, models were constructed based on the Gompertz function to describe the dynamics of rotundone concentration in berries through the ripening process according to phenological and thermal times. This characterisation is an important step forward to potentially predict the final quality of the resultant wines based on the evolution of specific compounds in berries according to critical environmental and micrometeorological variables. The modelling techniques described in this paper were able to describe the behaviour of rotundone concentration based on seasonal weather conditions and grapevine phenological stages, and could be potentially used to predict the final rotundone concentration early in future growing seasons. This could enable the adoption of precision irrigation and canopy management strategies to effectively mitigate adverse impacts related to climate change and microclimatic variability, such as heat waves, within a vineyard on wine quality.


Food Chemistry | 2014

Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon

Tebo Maseko; Kate Howell; F. R. Dunshea; Ken Ng

The effect of dietary supplementation with Se-enriched Agaricus bisporus on cytosolic gluthathione peroxidase-1 (GPx-1), gastrointestinal specific glutathione peroxidase-2 (GPx-2), thioredoxin reductase-1 (TrxR-1) and selenoprotein P (SeP) mRNA expression and GPx-1 enzyme activity in rat colon was examined. Rats were fed for 5weeks with control diet (0.15μg Se/g feed) or Se-enriched diet fortified with selenised mushroom (1μg Se/g feed). The mRNA expression levels were found to be significantly (P<0.01) up-regulated by 1.65-fold and 2.3-fold for GPx-1 and GPx-2, respectively, but were not significantly different for TrxR-1 and SeP between the 2 diet treatments. The up-regulation of GPx-1 mRNA expression was consistent with GPX-1 activity level, which was significantly (P<0.05) increased by 1.77-fold in rats fed with the Se-enriched diet compared to the control diet. The results showed that selenised A. bisporus can positively increase GPx-1 and GPx-2 gene expression and GPx-1 enzyme activity in rat colon.

Collaboration


Dive into the Kate Howell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Bennett

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Bruna Condé

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Krstic

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar

Markus Herderich

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge