Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Koles is active.

Publication


Featured researches published by Kate Koles.


Journal of Biological Chemistry | 2012

Mechanism of Evenness Interrupted (Evi)-Exosome Release at Synaptic Boutons

Kate Koles; John J. Nunnari; Ceren Korkut; Romina Barria; Cassandra Brewer; Yihang Li; John D. Leszyk; Bing Zhang; Vivian Budnik

Background: Release of microvesicles, including exosomes, is a novel mechanism of intercellular communication. At Drosophila synapses, the transmembrane Wnt-binding protein Evi/Wls is released in vesicles. Results: Evi-exosome release requires Rab11, Syntaxin 1A, and Myosin5. Conclusion: We established an in vivo system to elucidate the mechanisms of exosomal release. Significance: This is the first in vivo characterization of exosomal communication in the nervous system. Wnt signaling plays critical roles during synaptic development and plasticity. However, the mechanisms by which Wnts are released and travel to target cells are unresolved. During synaptic development, the secretion of Drosophila Wnt1, Wingless, requires the function of Evenness Interrupted (Evi)/Wls, a Wingless-binding protein that is secreted along with Wingless at the neuromuscular junction. Given that Evi is a transmembrane protein, these studies suggested the presence of a novel vesicular mechanism of trans-synaptic communication, potentially in the form of exosomes. To establish the mechanisms for the release of Evi vesicles, we used a dsRNA assay in cultured cells to screen for genes that when down-regulated prevent the release of Evi vesicles. We identified two proteins, Rab11 and Syntaxin 1A (Syx1A), that were required for Evi vesicle release. To determine whether the same mechanisms were used in vivo at the neuromuscular junction, we altered the activity of Rab11 and Syx1A in motoneurons and determined the impact on Evi release. We found that Syx1A, Rab11, and its effector Myosin5 were required for proper Evi vesicle release. Furthermore, ultrastructural analysis of synaptic boutons demonstrated the presence of multivesicular bodies, organelles involved in the production and release of exosomes, and these multivesicular bodies contained Evi. We also used mass spectrometry, electron microscopy, and biochemical techniques to characterize the exosome fraction from cultured cells. Our studies revealed that secreted Evi vesicles show remarkable conservation with exosomes in other systems. In summary, our observations unravel some of the in vivo mechanisms required for Evi vesicle release.


Journal of Biological Chemistry | 2006

Protein O-Fucosyltransferase 2 Adds O-Fucose to Thrombospondin Type 1 Repeats

Yi Luo; Kate Koles; Wendy Vorndam; Robert S. Haltiwanger; Vladislav M. Panin

O-Fucose is an unusual form of glycosylation found on epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) in many secreted and transmembrane proteins. Recently O-fucose on EGF repeats was shown to play important roles in Notch signaling. In contrast, physiological roles for O-fucose on TSRs are unknown. In the accompanying paper (Luo, Y., Nita-Lazar, A., and Haltiwanger, R. S. (2006) J. Biol. Chem. 281, 9385–9392), we demonstrated that an enzyme distinct from protein O-fucosyltransferase 1 adds O-fucose to TSRs. A known homologue of O-fucosyltransferase 1 is putative protein O-fucosyltransferase 2. The cDNA sequence encoding O-fucosyltransferase 2 was originally identified during a data base search for fucosyltransferases in Drosophila. Like O-fucosyltransferase 1, O-fucosyltransferase 2 is conserved from Caenorhabditis elegans to humans. Although O-fucosyltransferase 2 was assumed to be another protein O-fucosyltransferase, no biochemical characterization existed supporting this contention. Here we show that RNAi-mediated reduction of the O-fucosyltransferase 2 message significantly decreased TSR-specific O-fucosyltransferase activity in Drosophila S2 cells. We also found that O-fucosyltransferase 2 is predominantly localized in the endoplasmic reticulum compartment of these cells. Furthermore, we expressed recombinant Drosophila O-fucosyltransferase 2 and showed that it O-fucosylates TSRs but not EGF repeats in vitro. These results demonstrate that O-fucosyltransferase 2 is in fact a TSR-specific O-fucosyltransferase.


Neuron | 2013

Regulation of Postsynaptic Retrograde Signaling by Presynaptic Exosome Release

Ceren Korkut; Yihang Li; Kate Koles; Cassandra Brewer; James A. Ashley; Motojiro Yoshihara; Vivian Budnik

Retrograde signals from postsynaptic targets are critical during development and plasticity of synaptic connections. These signals serve to adjust the activity of presynaptic cells according to postsynaptic cell outputs and to maintain synaptic function within a dynamic range. Despite their importance, the mechanisms that trigger the release of retrograde signals and the role of presynaptic cells in this signaling event are unknown. Here we show that a retrograde signal mediated by Synaptotagmin 4 (Syt4) is transmitted to the postsynaptic cell through anterograde delivery of Syt4 via exosomes. Thus, by transferring an essential component of retrograde signaling through exosomes, presynaptic cells enable retrograde signaling.


Cold Spring Harbor Perspectives in Biology | 2012

Wnt Signaling in Neuromuscular Junction Development

Kate Koles; Vivian Budnik

Wnt proteins are best known for their profound roles in cell patterning, because they are required for the embryonic development of all animal species studied to date. Besides regulating cell fate, Wnt proteins are gaining increasing recognition for their roles in nervous system development and function. New studies indicate that multiple positive and negative Wnt signaling pathways take place simultaneously during the formation of vertebrate and invertebrate neuromuscular junctions. Although some Wnts are essential for the formation of NMJs, others appear to play a more modulatory role as part of multiple signaling pathways. Here we review the most recent findings regarding the function of Wnts at the NMJ from both vertebrate and invertebrate model systems.


The Journal of Neuroscience | 2010

Sialyltransferase Regulates Nervous System Function in Drosophila

Elena Repnikova; Kate Koles; Michiko Nakamura; Jared Pitts; Haiwen Li; Apoorva Ambavane; Mark J. Zoran; Vladislav M. Panin

In vertebrates, sialylated glycans participate in a wide range of biological processes and affect the development and function of the nervous system. While the complexity of glycosylation and the functional redundancy among sialyltransferases provide obstacles for revealing biological roles of sialylation in mammals, Drosophila possesses a sole vertebrate-type sialyltransferase, Drosophila sialyltransferase (DSiaT), with significant homology to its mammalian counterparts, suggesting that Drosophila could be a suitable model to investigate the function of sialylation. To explore this possibility and investigate the role of sialylation in Drosophila, we inactivated DSiaT in vivo by gene targeting and analyzed phenotypes of DSiaT mutants using a combination of behavioral, immunolabeling, electrophysiological, and pharmacological approaches. Our experiments demonstrated that DSiaT expression is restricted to a subset of CNS neurons throughout development. We found that DSiaT mutations result in significantly decreased life span, locomotor abnormalities, temperature-sensitive paralysis, and defects of neuromuscular junctions. Our results indicate that DSiaT regulates neuronal excitability and affects the function of a voltage-gated sodium channel. Finally, we showed that sialyltransferase activity is required for DSiaT function in vivo, which suggests that DSiaT mutant phenotypes result from a defect in sialylation of N-glycans. This work provided the first evidence that sialylation has an important biological function in protostomes, while also revealing a novel, nervous system-specific function of α2,6-sialylation. Thus, our data shed light on one of the most ancient functions of sialic acids in metazoan organisms and suggest a possibility that this function is evolutionarily conserved between flies and mammals.


Glycoconjugate Journal | 2006

Glycomic studies of Drosophila melanogaster embryos.

Simon J. North; Kate Koles; Caleb Hembd; Howard R. Morris; Anne Dell; Vladislav M. Panin; Stuart M. Haslam

With the complete genome sequence of Drosophila melanogaster defined a systematic approach towards understanding the function of glycosylation has become possible. Structural assignment of the entire Drosophila glycome during specific developmental stages could provide information that would shed further light on the specific roles of different glycans during development and pinpoint the activity of certain glycosyltransferases and other glycan biosynthetic genes that otherwise might be missed through genetic analyses. In this paper the major glycoprotein N- and O-glycans of Drosophila embryos are described as part of our initial undertaking to characterize the glycome of Drosophila melanogaster. The N-glycans are dominated by high mannose and paucimannose structures. Minor amounts of mono-, bi- and tri-antennary complex glycans were observed with GlcNAc and Galβ1–4GlcNAc non-reducing end termini. O-glycans were restricted to the mucin-type core 1 Galβ1-3GalNAc sequence.


Genetics | 2005

The twisted Gene Encodes Drosophila Protein O-Mannosyltransferase 2 and Genetically Interacts With the rotated abdomen Gene Encoding Drosophila Protein O-Mannosyltransferase 1

Dmitry Lyalin; Kate Koles; Sigrid D Roosendaal; Elena Repnikova; Laura Van Wechel; Vladislav M. Panin

The family of mammalian O-mannosyltransferases includes two enzymes, POMT1 and POMT2, which are thought to be essential for muscle and neural development. Similar to mammalian organisms, Drosophila has two O-mannosyltransferase genes, rotated abdomen (rt) and DmPOMT2, encoding proteins with high homology to their mammalian counterparts. The previously reported mutant phenotype of the rt gene includes a clockwise rotation of the abdomen and defects in embryonic muscle development. No mutants have been described so far for the DmPOMT2 locus. In this study, we determined that the mutation in the twisted (tw) locus, tw1, corresponds to a DmPOMT2 mutant. The twisted alleles represent a complementation group of recessive mutations that, similar to the rt mutants, exhibit a clockwise abdomen rotation phenotype. Several tw alleles were isolated in the past; however, none of them was molecularly characterized. We used an expression rescue approach to confirm that tw locus represents DmPOMT2 gene. We found that the tw1 allele represents an amino acid substitution within the conserved PMT domain of DmPOMT2 (TW) protein. Immunostaining experiments revealed that the protein products of both rt and tw genes colocalize within Drosophila cells where they reside in the ER subcellular compartment. In situ hybridization analysis showed that both genes have essentially overlapping patterns of expression throughout most of embryogenesis (stages 8–17), while only the rt transcript is present at early embryonic stages (5 and 6), suggesting its maternal origin. Finally, we analyzed the genetic interactions between rt and tw using several mutant alleles, RNAi, and ectopic expression approaches. Our data suggest that the two Drosophila O-mannosyltransferase genes, rt and tw, have nonredundant functions within the same developmental cascade and that their activities are required simultaneously for possibly the same biochemical process. Our results establish the possibility of using Drosophila as a model system for studying molecular and genetic mechanisms of protein O-mannosylation during development.


Glycoconjugate Journal | 2009

Sialylation in protostomes: a perspective from Drosophila genetics and biochemistry

Kate Koles; Elena Repnikova; G. V. Pavlova; L. I. Korochkin; Vladislav M. Panin

Numerous studies have revealed important functions for sialylation in both prokaryotes and higher animals. However, the genetic and biochemical potential for sialylation in Drosophila has only been confirmed recently. Recent studies suggest significant similarities between the sialylation pathways of vertebrates and insects and provide evidence for their common evolutionary origin. These new data support the hypothesis that sialylation in insects is a specialized and developmentally regulated process which likely plays a prominent role in the nervous system. Yet several key issues remain to be addressed in Drosophila, including the initiation of sialic acid de novo biosynthesis and understanding the structure and function of sialylated glycoconjugates. This review discusses our current knowledge of the Drosophila sialylation pathway, as compared to the pathway in bacteria and vertebrates. We arrive at the conclusion that Drosophila is emerging as a useful model organism that is poised to shed new light on the function of sialylation not only in protostomes, but also in a larger evolutionary context.


Cellular logistics | 2012

Exosomes go with the Wnt.

Kate Koles; Vivian Budnik

Exosomes, small secreted microvesicles, are implicated in intercellular communication in diverse cell types, transporting protein, lipid and nucleic acid cargo that impact the physiology of recipient cells. Besides the signaling function of exosomes they also serve as a mechanism to dispose obsolete cellular material.1 Particularly exciting is the involvement of exosomal communication in the nervous system, as this has important implications for brain development and function. The properties of exosomes are also beginning to entice the biomedical community since they represent potentially novel avenues for the targeted delivery of customized exosome cargo, such as miRNAs, during disease. Our findings implicating exosomes in trans-synaptic communication emerged from the serendipitous observation that at the Drosophila larval neuromuscular junction (NMJ) the release of a signaling molecule, Wnt1/Wingless (Wg) and its binding partner Evenness Interrupted (Evi)/Wntless (Wls)/Sprint (Srt), were released by motorneurons in association with vesicles, which we postulated to be exosomes.2 In our most recent paper3 using in vivo analysis at the Drosophila NMJ as well as in cultured insect cells we formally demonstrate that Evi rides in exosomes that are released to the extracellular space and identify some of the players involved in their release. In addition, a proteomic analysis of exosomes highlights novel potential function of exosomes.


Journal of Biological Chemistry | 2004

Functional characterization of Drosophila sialyltransferase.

Kate Koles; Kenneth D. Irvine; Vladislav M. Panin

Collaboration


Dive into the Kate Koles's collaboration.

Top Co-Authors

Avatar

Vivian Budnik

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Cassandra Brewer

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Ceren Korkut

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yihang Li

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Bing Zhang

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge