Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate L. Graham is active.

Publication


Featured researches published by Kate L. Graham.


Journal of Virology | 2003

Integrin-Using Rotaviruses Bind α2β1 Integrin α2 I Domain via VP4 DGE Sequence and Recognize αXβ2 and αVβ3 by Using VP7 during Cell Entry

Kate L. Graham; Peter Halasz; Yan Tan; Marilyn J. Hewish; Yoshikazu Takada; Erich R. Mackow; Martyn K. Robinson; Barbara S. Coulson

ABSTRACT Integrins α2β1, αXβ2, and αVβ3 have been implicated in rotavirus cell attachment and entry. The virus spike protein VP4 contains the α2β1 ligand sequence DGE at amino acid positions 308 to 310, and the outer capsid protein VP7 contains the αXβ2 ligand sequence GPR. To determine the viral proteins and sequences involved and to define the roles of α2β1, αXβ2, and αVβ3, we analyzed the ability of rotaviruses and their reassortants to use these integrins for cell binding and infection and the effect of peptides DGEA and GPRP on these events. Many laboratory-adapted human, monkey, and bovine viruses used integrins, whereas all porcine viruses were integrin independent. The integrin-using rotavirus strains each interacted with all three integrins. Integrin usage related to VP4 serotype independently of sialic acid usage. Analysis of rotavirus reassortants and assays of virus binding and infectivity in integrin-transfected cells showed that VP4 bound α2β1, and VP7 interacted with αXβ2 and αVβ3 at a postbinding stage. DGEA inhibited rotavirus binding to α2β1 and infectivity, whereas GPRP binding to αXβ2 inhibited infectivity but not binding. The truncated VP5* subunit of VP4, expressed as a glutathione S-transferase fusion protein, bound the expressed α2 I domain. Alanine mutagenesis of D308 and G309 in VP5* eliminated VP5* binding to the α2 I domain. In a novel process, integrin-using viruses bind the α2 I domain of α2β1 via DGE in VP4 and interact with αXβ2 (via GPR) and αVβ3 by using VP7 to facilitate cell entry and infection.


Journal of Virology | 2008

Rotavirus Infection Accelerates Type 1 Diabetes in Mice with Established Insulitis

Kate L. Graham; Natalie Sanders; Yan Tan; Janette Allison; Thomas W. H. Kay; Barbara S. Coulson

ABSTRACT Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet β cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged ≥12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8+ T-cell proportions in islets. Levels of β-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after β-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of β cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.


Diabetes | 2011

Macrophage Deletion of SOCS1 Increases Sensitivity to LPS and Palmitic Acid and Results in Systemic Inflammation and Hepatic Insulin Resistance

Nirupa Sachithanandan; Kate L. Graham; Sandra Galic; Jane Honeyman; Stacey Fynch; Kimberly A. Hewitt; Gregory R. Steinberg; Thomas W. H. Kay

OBJECTIVE Macrophage secretion of proinflammatory cytokines contributes to the pathogenesis of obesity-related insulin resistance. An important regulator of inflammation is the suppressor of cytokine signaling-1 (SOCS1), which inhibits the JAK-STAT and toll-like receptor-4 (TLR4) pathways. Despite the reported role of SOCS1 in inhibiting insulin signaling, it is surprising that a SOCS1 polymorphism that increases SOCS1 promoter activity is associated with enhanced insulin sensitivity despite obesity. In the current study, we investigated the physiological role of myeloid and lymphoid cell SOCS1 in regulating inflammation and insulin sensitivity. RESEARCH DESIGN AND METHODS We used mice generated by crossing SOCS1 floxed mice with mice expressing Cre recombinase under the control of the LysM-Cre promoter (SOCS1 LysM-Cre). These mice have deletion of SOCS1 in macrophages and lymphocytes. We assessed macrophage inflammation using flow cytometry and serum cytokine levels using Bioplex assays. We then measured insulin sensitivity using glucose tolerance tests and the euglycemic-hyperinsulinemic clamp. Using bone marrow–derived macrophages, we tested the effects of SOCS1 deletion in regulating responses to the TLR4 ligands: lipopolysaccharide (LPS) and palmitic acid. RESULTS SOCS1 LysM-Cre mice had increased macrophage expression of CD11c, enhanced sensitivity to LPS, and palmitic acid and increased serum concentrations of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein. Increased inflammation was associated with impaired glucose tolerance and hyperinsulinemia as a result of reduced hepatic but not skeletal muscle insulin sensitivity. CONCLUSIONS The expression of SOCS1 in hematopoietic cells protects mice against systemic inflammation and hepatic insulin resistance potentially by inhibiting LPS and palmitate-induced TLR4 signaling in macrophages.


Journal of Virology | 2007

Rotavirus Infection of Infant and Young Adult Nonobese Diabetic Mice Involves Extraintestinal Spread and Delays Diabetes Onset

Kate L. Graham; Joanne A. O'Donnell; Yan Tan; Natalie Sanders; Emma M. Carrington; Janette Allison; Barbara S. Coulson

ABSTRACT Rotaviruses have been implicated as a possible viral trigger for exacerbations in islet autoimmunity, suggesting they might modulate type 1 diabetes development. In this study, the ability of rotavirus strain RRV to infect the pancreas and affect insulitis and diabetes was examined in nonobese diabetic (NOD) mice, an experimental model of type 1 diabetes. Mice were inoculated either orally or intraperitoneally as infants or young adults. In infant mice inoculated orally, rotavirus antigen was detected in pancreatic macrophages outside islets and infectious virus was found in blood cells, pancreas, spleen, and liver. Extraintestinal RRV spread and pancreatic presence of infectious virus also occurred in intraperitoneally inoculated infant and adult mice. The initiation of insulitis was unaltered by infection. The onset of diabetes was delayed in infant mice inoculated orally and infant and adult mice inoculated intraperitoneally. In contrast, adult mice inoculated orally showed no evidence of pancreatic RRV, the lowest rate of detectable RRV replication, and no diabetes modulation. Thus, the ability of RRV infection to modulate diabetes development in infant and young adult NOD mice was related to the overall extent of detectable virus replication and the presence of infectious virus extraintestinally, including in the pancreas. These studies show that RRV infection of infant and young adult NOD mice provides significant protection against diabetes. As these findings do not support the hypothesis that rotavirus triggers autoimmunity related to type 1 diabetes, further research is needed to resolve this issue.


Journal of Virology | 2003

Monkey Rotavirus Binding to α2β1 Integrin Requires the α2 I Domain and Is Facilitated by the Homologous β1 Subunit

Sarah L. Londrigan; Kate L. Graham; Yoshikazu Takada; Peter Halasz; Barbara S. Coulson

ABSTRACT Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the α2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-α2β1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from α2β1 integrin, and SA11 precipitated β1 from α2β1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the α2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human α2 or α2β1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human α2β1 and, to a lesser extent, human α2 combined with hamster β1. Binding was inhibited by anti-α2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to α2, and required the presence of the α2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the α2 I domain that are necessary for type I collagen binding to α2β1 were not essential for rotavirus binding. Rotavirus-α2β1 binding led to increased virus infection and RRV growth. SA11 and RRV require the α2 I domain for binding to α2β1, and their binding to this integrin is distinguishable from that of collagen.


Journal of Immunology | 2011

TNF Receptor 1 Deficiency Increases Regulatory T Cell Function in Nonobese Diabetic mice

Jonathan Chee; Eveline Angstetra; Lina Mariana; Kate L. Graham; Emma M. Carrington; Horst Bluethmann; Pere Santamaria; Janette Allison; Thomas W. H. Kay; Balasubramanian Krishnamurthy; Helen E. Thomas

TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, these mice were crossed to β cell-specific, highly diabetogenic TCR transgenic I-Ag7–restricted NOD4.1 mice and Kd-restricted NOD8.3 mice. TNFR1-deficient NOD4.1 and NOD8.3 mice were protected from diabetes and had significantly less insulitis compared with wild type NOD4.1 and NOD8.3 controls. Diabetic NOD4.1 mice rejected TNFR1-deficient islet grafts as efficiently as control islets, confirming that TNFR1 signaling is not directly required for β cell destruction. Flow cytometric analysis showed a significant increase in the number of CD4+CD25+Foxp3+ T regulatory cells in TNFR1-deficient mice. TNFR1-deficient T regulatory cells were functionally better at suppressing effector cells than were wild type T regulatory cells both in vitro and in vivo. This study suggests that blocking TNF signaling may be beneficial in increasing the function of T regulatory cells and suppression of type 1 diabetes.


American Journal of Pathology | 2011

Autoreactive Cytotoxic T Lymphocytes Acquire Higher Expression of Cytotoxic Effector Markers in the Islets of NOD Mice after Priming in Pancreatic Lymph Nodes

Kate L. Graham; Balasubramanian Krishnamurthy; Stacey Fynch; Zia U. Mollah; Robyn Maree Slattery; Pere Santamaria; Thomas W. H. Kay; Helen E. Thomas

Cytotoxic T lymphocytes (CTLs) that cause type 1 diabetes are activated in draining lymph nodes and become concentrated as fully active CTLs in inflamed pancreatic islets. It is unclear whether CTL function is driven by signals received in the lymph node or also in the inflamed tissue. We studied whether the development of cytotoxicity requires further activation in islets. Autoreactive CTLs found in the islets of diabetes-prone NOD mice had acquired much higher expression of the cytotoxic effector markers granzyme B, interferon γ, and CD107a than had those in the pancreatic lymph node (PLN). Increased expression seemed to result from stimulation in the islet itself. T cells held up from migrating from the PLN by administration of the sphingosine-1-phosphate agonist FTY720 did not increase expression of cytotoxic molecules in the PLN. Stimulation did not require antigen presentation or cytokine secretion by the target β cells because it was not affected by the absence of class I major histocompatibility complex expression or by the overexpression of suppressor of cytokine signaling-1. Activation of CD40-expressing cells stimulated increased CTL function and β-cell destruction, suggesting that signals derived from CD40-expressing cells promote the acquisition of cytotoxicity in the islet environment. These data provide in vivo evidence that stimulation of cytotoxic effector molecule expression occurs in inflamed islets and is independent of β cells.


Immunology and Cell Biology | 2009

SOCS1 negatively regulates the production of Foxp3 + CD4 + T cells in the thymus

Yifan Zhan; Gayle M. Davey; Kate L. Graham; Hiu Kiu; Nadine L. Dudek; Thomas W. H. Kay; Andrew M. Lew

SOCS1 profoundly influences the development and peripheral homeostasis of CD8+ T cells but has less impact on CD4+ T cells. Despite the moderate influence of SOCS1 in the development of the total CD4 T‐cell lineage, we show here that SOCS1 deficiency resulted in a 10‐fold increase in Foxp3+ CD4+ T cells in the thymus. Increased numbers of Foxp3+ thymocytes occurred in mice with T‐cell‐specific ablation of SOCS1, suggesting that the effect is T‐cell intrinsic. This increase in Foxp3+ CD4+cells in SOCS1‐deficient mice also occurred in the absence of IFN‐γ or/and IL‐7 signaling. Increase in CD25+CD4+ T cells in the absence of SOCS1 could be partly due to enhanced survival by CD25+CD4+cells, to a lesser degree CD25−CD4+ T cells, from SOCS1‐deficient mice with or without T‐cell growth factors.


Journal of Virology | 2004

Effects on Rotavirus Cell Binding and Infection of Monomeric and Polymeric Peptides Containing α2β1 and αxβ2 Integrin Ligand Sequences

Kate L. Graham; Weiguang Zeng; Yoshikazu Takada; David C. Jackson; Barbara S. Coulson

ABSTRACT Integrin-using rotaviruses bind MA104 cell surface α2β1 integrin via the Asp-Gly-Glu (DGE) sequence in virus spike protein VP4 and interact with αxβ2 integrin during cell entry through outer capsid protein VP7. Infection is inhibited by the α2β1 ligand Asp-Gly-Glu-Ala (DGEA) and the αxβ2 ligand Gly-Pro-Arg-Pro (GPRP), and virus-α2β1 binding is increased by α2β1 activation. In this study, we analyzed the effects of monomers and polymers containing DGEA-, GPRP-, and DGEA-related peptides on rotavirus binding and infection in intestinal (Caco-2) and kidney (MA104) cells and virus binding to recombinant α2β1. Blockade of rotavirus-cell binding and infection by peptides and anti-α2 antibody showed that Caco-2 cell entry is dependent on virus binding to α2β1 and interaction with αxβ2. At up to 0.5 mM, monomeric DGEA and DGAA inhibited binding to α2β1 and infection. At higher concentrations, DGEA and DGAA showed a reduced ability to inhibit virus-cell binding and infection that depended on virus binding to α2β1 but occurred without alteration in cell surface expression of α2, β2, or αvβ3 integrin. This loss of DGEA activity was abolished by genistein treatment and so was dependent on tyrosine kinase signaling. It is proposed that this signaling activated existing cell surface α2β1 to increase virus-cell attachment and entry. Polymeric peptides containing DGEA and GPRP or GPRP only were inhibitory to SA11 infection at approximately 10-fold lower concentrations than peptide monomers. As polymerization can improve peptide inhibition of virus-receptor interactions, this approach could be useful in the development of inhibitors of receptor recognition by other viruses.


JCI insight | 2016

Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes

Gaurang Jhala; Jonathan Chee; Prerak Trivedi; Claudia Selck; Esteban Nicolas Gurzov; Kate L. Graham; Helen E. Thomas; Thomas W. H. Kay; Balasubramanian Krishnamurthy

High-affinity self-reactive thymocytes are purged in the thymus, and residual self-reactive T cells, which are detectable in healthy subjects, are controlled by peripheral tolerance mechanisms. Breakdown in these mechanisms results in autoimmune disease, but antigen-specific therapy to augment natural mechanisms can prevent this. We aimed to determine when antigen-specific therapy is most effective. Islet autoantigens, proinsulin (PI), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were expressed in the antigen-presenting cells (APCs) of autoimmune diabetes-prone nonobese diabetic (NOD) mice in a temporally controlled manner. PI expression from gestation until weaning was sufficient to completely protect NOD mice from diabetes, insulitis, and development of insulin autoantibodies. Insulin-specific T cells were significantly diminished, were naive, and did not express IFN-γ when challenged. This long-lasting effect from a brief period of treatment suggests that autoreactive T cells are not produced subsequently. We tracked IGRP206-214-specific CD8+ T cells in NOD mice expressing IGRP in APCs. When IGRP was expressed only until weaning, IGRP206-214-specific CD8+ T cells were not detected later in life. Thus, anti-islet autoimmunity is determined during early life, and autoreactive T cells are not generated in later life. Bolstering tolerance to islet antigens in the perinatal period is sufficient to impart lasting protection from diabetes.

Collaboration


Dive into the Kate L. Graham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacey Fynch

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janette Allison

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Brodnicki

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge