Kate L. Ronayne
Rutherford Appleton Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kate L. Ronayne.
Science | 2008
Crystal Shih; Anna Katrine Museth; Malin Abrahamsson; Ana María Blanco-Rodríguez; Angel J. Di Bilio; Jawahar Sudhamsu; Brian R. Crane; Kate L. Ronayne; Michael Towrie; Antonín Vlček; John H. Richards; Jay R. Winkler; Harry B. Gray
Energy flow in biological structures often requires submillisecond charge transport over long molecular distances. Kinetics modeling suggests that charge-transfer rates can be greatly enhanced by multistep electron tunneling in which redox-active amino acid side chains act as intermediate donors or acceptors. We report transient optical and infrared spectroscopic experiments that quantify the extent to which an intervening tryptophan residue can facilitate electron transfer between distant metal redox centers in a mutant Pseudomonas aeruginosa azurin. CuI oxidation by a photoexcited ReI-diimine at position 124 on a histidine(124)-glycine(123)-tryptophan(122)-methionine(121) β strand occurs in a few nanoseconds, fully two orders of magnitude faster than documented for single-step electron tunneling at a 19 angstrom donor-acceptor distance.
Applied Spectroscopy | 2006
Pavel Matousek; Edward R. C. Draper; Allen E. Goodship; Ian P. Clark; Kate L. Ronayne; Anthony W. Parker
We report the first transcutaneous Raman spectrum of human bone in vivo obtained at skin-safe laser illumination levels. The spectrum of thumb distal phalanx was obtained using spatially offset Raman spectroscopy (SORS), which provides chemically specific information on deep layers of human tissue, well beyond the reach of existing comparative approaches. The spectroscopy is based on collecting Raman spectra away from the point of laser illumination using concentric rings of optical fibers. As a generic analytical tool this approach paves the way for a range of uses including disease diagnosis, noninvasive probing of pharmaceutical products, biofilms, catalysts, paints, and in dermatological applications.
Journal of the American Chemical Society | 2009
Maria Besora; José-Luis Carreón-Macedo; Alexander J. Cowan; Michael W. George; Jeremy N. Harvey; Peter Portius; Kate L. Ronayne; Xue-Zhong Sun; Michael Towrie
A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragments (3)Fe(CO)(4) and (3)Fe(CO)(3) formed upon photolysis of Fe(CO)(5). Experimental data are provided for reactions in liquid n-heptane and in supercritical Xe (scXe) and Ar (scAr). Measurement of the temperature dependence of the rate of decay of (3)Fe(CO)(4) to produce (1)Fe(CO)(4)L (L = heptane or Xe) shows that these reactions have significant activation energies of 5.2 (+/-0.2) and 7.1 (+/-0.5) kcal mol(-1) respectively. Nonadiabatic transition state theory is used to predict rate constants for ligand addition, based on density functional theory calculations of singlet and triplet potential energy surfaces. On the basis of these results a new mechanism (spin-crossover followed by ligand addition) is proposed for these spin forbidden reactions that gives good agreement with the new experimental results as well as with earlier gas-phase measurements of some addition rate constants. The theoretical work accounts for the different reaction order observed in the gas phase and in some condensed phase experiments. The reaction of (3)Fe(CO)(4) with H(2) cannot be easily probed in n-heptane since conversion to (1)Fe(CO)(4)(heptane) dominates. scAr doped with H(2) provides a unique environment to monitor this reaction--Ar cannot be added to form (1)Fe(CO)(4)Ar, and H(2) addition is observed instead. Again theory accounts for the reactivity and also explains the difference between the very small activation energy measured for H(2) addition in the gas phase (Wang, W. et al. J. Am. Chem. Soc. 1996, 118, 8654) and the larger values obtained here for heptane and Xe addition in solution.
Journal of the American Chemical Society | 2008
Deborah Stoner-Ma; Andrew A. Jaye; Kate L. Ronayne; Jérome Nappa; Stephen R. Meech; Peter J. Tonge
The neutral form of the chromophore in wild-type green fluorescent protein (wtGFP) undergoes excited-state proton transfer (ESPT) upon excitation, resulting in characteristic green (508 nm) fluorescence. This ESPT reaction involves a proton relay from the phenol hydroxyl of the chromophore to the ionized side chain of E222, and results in formation of the anionic chromophore in a protein environment optimized for the neutral species (the I* state). Reorientation or replacement of E222, as occurs in the S65T and E222Q GFP mutants, disables the ESPT reaction and results in loss of green emission following excitation of the neutral chromophore. Previously, it has been shown that the introduction of a second mutation (H148D) into S65T GFP allows the recovery of green emission, implying that ESPT is again possible. A similar recovery of green fluorescence is also observed for the E222Q/H148D mutant, suggesting that D148 is the proton acceptor for the ESPT reaction in both double mutants. The mechanism of fluorescence emission following excitation of the neutral chromophore in S65T/H148D and E222Q/H148D has been explored through the use of steady state and ultrafast time-resolved fluorescence and vibrational spectroscopy. The data are contrasted with those of the single mutant S65T GFP. Time-resolved fluorescence studies indicate very rapid (< 1 ps) formation of I* in the double mutants, followed by vibrational cooling on the picosecond time scale. The time-resolved IR difference spectra are markedly different to those of wtGFP or its anionic mutants. In particular, no spectral signatures are apparent in the picosecond IR difference spectra that would correspond to alteration in the ionization state of D148, leading to the proposal that a low-barrier hydrogen bond (LBHB) is present between the phenol hydroxyl of the chromophore and the side chain of D148, with different potential energy surfaces for the ground and excited states. This model is consistent with recent high-resolution structural data in which the distance between the donor and acceptor oxygen atoms is < or = 2.4 A. Importantly, these studies indicate that the hydrogen-bond network in wtGFP can be replaced by a single residue, an observation which, when fully explored, will add to our understanding of the various requirements for proton-transfer reactions within proteins.
Analyst | 2007
Rebecca Baker; Pavel Matousek; Kate L. Ronayne; Anthony W. Parker; Keith Rogers; Nicholas Stone
Breast calcifications are found in both benign and malignant lesions and their composition can indicate the disease state. Calcium oxalate (dihydrate) (COD) is associated with benign lesions, however calcium hydroxyapatite (HAP) is found mainly in proliferative lesions including carcinoma. The diagnostic practices of mammography and histopathology examine the morphology of the specimen. They can not reliably distinguish between the two types of calcification, which may indicate the presence of a cancerous lesion during mammography. We demonstrate for the first time that Kerr-gated Raman spectroscopy is capable of non-destructive probing of sufficient biochemical information from calcifications buried within tissue, and this information can potentially be used as a first step in identifying the type of lesion. The method uses a picosecond pulsed laser combined with fast temporal gating of Raman scattered light to enable spectra to be collected from a specific depth within scattering media by collecting signals emerging from the sample at a given time delay following the laser pulse. Spectra characteristic of both HAP and COD were obtained at depths of up to 0.96 mm, in both chicken breast and fatty tissue; and normal and cancerous human breast by utilising different time delays. This presents great potential for the use of Raman spectroscopy as an adjunct to mammography in the early diagnosis of breast cancer.
Physical Chemistry Chemical Physics | 2006
Kate L. Ronayne; Hauke Paulsen; Andreas Höfer; Andrew C. Dennis; Juliusz A. Wolny; Aleksandr I. Chumakov; Volker Schünemann; Heiner Winkler; H. Spiering; Azzedine Bousseksou; P. Gütlich; Alfred X. Trautwein; John J. McGarvey
The vibrational modes of the low-spin and high-spin isomers of the spin crossover complex [Fe(phen)(2)(NCS)(2)] (phen = 1,10-phenanthroline) have been measured by IR and Raman spectroscopy and by nuclear inelastic scattering. The vibrational frequencies and normal modes and the IR and Raman intensities have been calculated by density functional methods. The vibrational entropy difference between the two isomers, DeltaS(vib), which is--together with the electronic entropy difference DeltaS(el)--the driving force for the spin-transition, has been determined from the measured and from the calculated frequencies. The calculated difference (DeltaS(vib) = 57-70 J mol(-1) K(-1), depending on the method) is in qualitative agreement with experimental values (20-36 J mol(-1) K(-1)). Only the low energy vibrational modes (20% of the 147 modes of the free molecule) contribute to the entropy difference and about three quarters of the vibrational entropy difference are due to the 15 modes of the central FeN(6) octahedron.
Journal of the American Chemical Society | 2009
Ana María Blanco-Rodríguez; Michael Busby; Kate L. Ronayne; Michael Towrie; Cristian Grădinaru; Jawahar Sudhamsu; Jan Sýkora; Martin Hof; Stanislav Záliš; Angel J. Di Bilio; Brian R. Crane; Harry B. Gray; Antonín Vlček
Photoinduced relaxation processes of five structurally characterized Pseudomonas aeruginosa Re(I)(CO)(3)(alpha-diimine)(HisX) (X = 83, 107, 109, 124, 126)Cu(II) azurins have been investigated by time-resolved (ps-ns) IR spectroscopy and emission spectroscopy. Crystal structures reveal the presence of Re-azurin dimers and trimers that in two cases (X = 107, 124) involve van der Waals interactions between interdigitated diimine aromatic rings. Time-dependent emission anisotropy measurements confirm that the proteins aggregate in mM solutions (D(2)O, KP(i) buffer, pD = 7.1). Excited-state DFT calculations show that extensive charge redistribution in the Re(I)(CO)(3) --> diimine (3)MLCT state occurs: excitation of this (3)MLCT state triggers several relaxation processes in Re-azurins whose kinetics strongly depend on the location of the metallolabel on the protein surface. Relaxation is manifested by dynamic blue shifts of excited-state nu(CO) IR bands that occur with triexponential kinetics: intramolecular vibrational redistribution together with vibrational and solvent relaxation give rise to subps, approximately 2, and 8-20 ps components, while the approximately 10(2) ps kinetics are attributed to displacement (reorientation) of the Re(I)(CO)(3)(phen)(im) unit relative to the peptide chain, which optimizes Coulombic interactions of the Re(I) excited-state electron density with solvated peptide groups. Evidence also suggests that additional segmental movements of Re-bearing beta-strands occur without perturbing the reaction field or interactions with the peptide. Our work demonstrates that time-resolved IR spectroscopy and emission anisotropy of Re(I) carbonyl-diimine complexes are powerful probes of molecular dynamics at or around the surfaces of proteins and protein-protein interfacial regions.
Biophysical Journal | 2008
Jasper J. van Thor; Kate L. Ronayne; Michael Towrie; J. Timothy Sage
The fluorescence photocycle of the green fluorescent protein is functionally dependent on the specific structural protein environment. A direct relationship between equilibrium protein side-chain conformation of glutamate 222 and reactivity is established, particularly the rate of ultrafast proton transfer reactions in the fluorescence photocycle. We show that parallel transformations in the photocycle have a structural origin, and we report on the vibrational properties of responsive amino acids on an ultrafast timescale. Blue excitation of GFP drives two parallel, excited-state deuteron transfer reactions with 10 ps and 75 ps time constants to the buried carboxylic acid side chain of glutamate 222 via a hydrogen-bonding network. Assignment of 1456 cm(-1) and 1441 cm(-1) modes to nu(sym) and assignment of 1564 cm(-1) and 1570 cm(-1) features to nu(asym) of E222 in the 10 ps and 75 ps components, respectively, was possible from the analysis of the transient absorption data of an E222D mutant and was consistent with photoselection measurements. In contrast to the wild-type, measurements of E222D can be described with only one difference spectrum, with the nu(sym) mode at 1435 cm(-1) and the nu(asym) mode at 1567 cm(-1), also correlating a large Deltanu(asym-sym) with slow excited-state proton transfer kinetics. Density Functional Theory calculations and published model compound and theoretical studies relate differences in Deltanu(asym-sym) to the strength and number of hydrogen-bonding interactions that are detected via equilibrium geometry and COO- stretching frequency differences of the carboxylate. The correlation of photocycle kinetics with side-chain conformation of the acceptor suggests that proton transfer from S205 to E222 controls the rate of the overall excited-state proton transfer process, which is consistent with recent theoretical predictions. Photoselection measurements show agreement for localized C=O vibrations of chromophore, Q69, and E222 with Density Functional Theory and ab initio calculations placed in the x-ray geometry and provide their vibrational response in the intermediates in the photocycle.
Applied Spectroscopy | 2010
Neil Everall; Pavel Matousek; Neil A. Macleod; Kate L. Ronayne; Ian P. Clark
Picosecond time-resolved transmission Raman data were acquired for 1 mm thick powder samples of trans-stilbene, and a Monte Carlo model was developed that can successfully model the laser and Raman pulse profiles. Photon migration broadened the incident (∼1 ps) probe pulse by two orders of magnitude. As expected from previous studies of Raman photon migration in backscattering mode, the transmitted Raman pulse was broader than the transmitted laser pulse and took longer to propagate through the sample. The late-arriving photons followed tortuous flight paths in excess of 50 mm on traversing the 1 mm sample. The Monte Carlo code was also used to study the spatial resolution (lateral and depth) of steady-state transmission Raman spectroscopy in the diffusion regime by examining the distribution of Raman generation positions as a function of incident beam size, sample thickness, and transport length. It was predicted that the lateral resolution should worsen linearly with sample thickness (typically the resolution was about 50% of the sample thickness), and this is an inevitable consequence of operating in the diffusion regime. The lateral resolution was better at the sample surface (essentially determined by the probe beam diameter or the collection aperture) than for buried objects, but transmission sampling was shown to be biased towards the mid-point of thick samples. Time-resolved transmission experiments should improve the lateral resolution by preferentially detecting snake photons, subject to constraints of signal-to-noise ratio.
Journal of Physical Chemistry A | 2008
Ana María Blanco-Rodríguez; Kate L. Ronayne; Stanislav Záliš; Jan Sýkora; Martin Hof; Antonín Vlček
Excited-state dynamics of [Re(Etpy)(CO)3(bpy)]+ was studied in three imidazolium ionic liquids by time-resolved IR and emission spectroscopy on the picosecond to nanosecond time scale. Low-lying excited states were characterized by TD-DFT calculations, which also provided molecular dipole moment vectors in the relevant electronic states. TRIR spectra in ionic liquids show initial populations of two excited states: predominantly bpy-localized 3IL and 3MLCT, characterized by nu(CO) bands shifted to lower and higher frequencies, respectively, relative to the ground state. Internal conversion of 3IL to the lowest triplet 3MLCT occurred on a time scale commensurate with solvent relaxation. The nu(CO) IR bands of the 3MLCT state undergo a dynamic shift to higher wavenumbers during relaxation. Its three-exponential kinetics were determined and attributed to vibrational cooling (units of picoseconds), energy dissipation to the bulk solvent (tens of picoseconds), and solvent relaxation, the lifetime of which increases with increasing viscosity: [EMIM]BF4 (330 ps) < [BMIM]BF4 (470 ps) < [BMIM]PF6 (1570 ps). Time-resolved phosphorescence spectra in [BMIM]PF6 show a approximately 2 ns drop in intensity due to the 3IL --> 3MLCT conversion and a dynamic Stokes shift to lower energies with a lifetime decreasing from 1.8 ns at 21 degrees C to 1.1 ns at 37 degrees C, due to decreasing viscosity of the ionic liquid. It is proposed that solvent relaxation predominantly involves collective translational motions of ions. It drives the 3IL --> 3MLCT conversion, increases charge reorganization in the lowest excited-state 3MLCT, and affects vibrational anharmonic coupling, which together cause the dynamic shift of excited-state IR bands. TRIR spectroscopy of carbonyl-diimine complexes emerges as a new way to investigate various aspects of solvation dynamics, while the use of slowly relaxing ionic liquids offers new insight into the photophysics of Re(I) carbonyl polypyridyls.