Kate L. Thompson
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kate L. Thompson.
Journal of the American Chemical Society | 2012
Kate L. Thompson; Pierre Chambon; Robert Verber; Steven P. Armes
Hydroxy-functionalized polymersomes (or block copolymer vesicles) were prepared via a facile one-pot RAFT aqueous dispersion polymerization protocol and evaluated as Pickering emulsifiers for the stabilization of emulsions of n-dodecane emulsion droplets in water. Linear polymersomes produced polydisperse oil droplets with diameters of ~50 μm regardless of the polymersome concentration in the aqueous phase. Introducing an oil-soluble polymeric diisocyanate cross-linker into the oil phase prior to homogenization led to block copolymer microcapsules, as expected. However, TEM inspection of these microcapsules after an alcohol challenge revealed no evidence for polymersomes, suggesting these delicate nanostructures do not survive the high-shear emulsification process. Thus the emulsion droplets are stabilized by individual diblock copolymer chains, rather than polymersomes. Cross-linked polymersomes (prepared by the addition of ethylene glycol dimethacrylate as a third comonomer) also formed stable n-dodecane-in-water Pickering emulsions, as judged by optical and fluorescence microscopy. However, in this case the droplet diameter varied from 50 to 250 μm depending on the aqueous polymersome concentration. Moreover, diisocyanate cross-linking at the oil/water interface led to the formation of well-defined colloidosomes, as judged by TEM studies. Thus polymersomes can indeed stabilize colloidosomes, provided that they are sufficiently cross-linked to survive emulsification.
Langmuir | 2012
Andrew J. Morse; Steven P. Armes; Kate L. Thompson; Damien Dupin; Lee A. Fielding; P. Mills; R. Swart
The emulsion copolymerization of 2-(diethylamino)ethyl methacrylate (DEA) with a divinylbenzene cross-linker in the presence of monomethoxy-capped poly(ethylene glycol) methacrylate (PEGMA) at 70 °C afforded near-monodisperse, sterically stabilized PEGMA-PDEA latexes at 10% solids. Dynamic light scattering studies indicated intensity-average diameters of 190 to 240 nm for these latexes at pH 9. A latex-to-microgel transition occurred on lowering the solution pH to below the latex pKa of 6.9. When dilute HCl/KOH was used to adjust the aqueous pH, a systematic reduction in the cationic microgel hydrodynamic diameter of 80 nm was observed over ten pH cycles as a result of the gradual buildup of background salt. However, no such size reduction was observed when using CO2/N2 gases to regulate the aqueous pH because this protocol does not generate background salt. Thus, the latter approach offers better reversibility, albeit at the cost of slower response times. PEGMA-PDEA microgel does not stabilize Pickering emulsions when homogenized at pH 3 with n-dodecane, sunflower oil, isononyl isononanoate, or isopropyl myristate. In contrast, PEGMA-PDEA latex proved to be a ubiquitous Pickering emulsifier at pH 10, forming stable oil-in-water emulsions with each of these four model oils. Lowering the solution pH from 10 to 3 resulted in demulsification within seconds. This is because these pH-responsive particles undergo a latex-to-microgel transition, which leads to their interfacial desorption. Six successive demulsification/emulsification cycles were performed on these Pickering emulsions using HCl/KOH to adjust the solution pH. Demulsification could also be achieved by purging the emulsion solution with CO2 gas to lower the aqueous pH to 4.8. However, complete phase separation required CO2 purging for 4 h at 20 °C. A subsequent N2 purge raised the aqueous pH sufficiently to induce a microgel-to-latex transition, but rehomogenization did not produce a stable Pickering emulsion. Presumably, a higher pH is required, which cannot be achieved by a N2 purge alone.
Journal of Colloid and Interface Science | 2015
Kate L. Thompson; Mark G. Williams; Steven P. Armes
Colloidosomes represent a rapidly expanding field with various applications in microencapsulation, including the triggered release of cargoes. With self-assembled shells comprising colloidal particles, they offer significant flexibility with respect to microcapsule functionality. This review explores the various types of particles and techniques that have been employed to prepare colloidosomes. The relative advantages and disadvantages of these routes are highlighted and their potential as microcapsules for both small molecule and macromolecular actives is evaluated.
Langmuir | 2010
A. Walsh; Kate L. Thompson; Steven P. Armes; David William York
Sterically stabilized polystyrene latexes were prepared by aqueous emulsion polymerization using a poly(ethylene imine) (PEI) stabilizer in the presence of 4-vinylbenzyl chloride (4-VBC; 1.0 wt % based on styrene). Partial quaternization of the amine groups on the PEI chains by 4-VBC occurs in situ, hence producing a chemically grafted steric stabilizer. Such 4-VBC-modified PEI chains were grafted more efficiently onto the polystyrene particles than unmodified PEI, as judged by aqueous electrophoresis, XPS, and nitrogen microanalysis. Moreover, partially quaternized PEI gave significantly smaller polystyrene particles than those synthesized in the absence of any PEI stabilizer or those synthesized using unmodified PEI. The partially quaternized PEI-stabilized polystyrene latex proved to be an effective emulsifier at pH 9, forming stable oil-in-water Pickering emulsions when homogenized (12,000 rpm, 2 min, 20 °C) with four model oils, namely, n-dodecane, methyl myristate, isononyl isononanoate, and sunflower oil. The primary and/or secondary amine groups on the PEI stabilizer chains were successfully cross-linked using three commercially available polymeric reagents, namely, tolylene 2,4-diisocyanate-terminated poly(propylene glycol) (PPG-TDI), poly(propylene glycol) diglycidyl ether (PPG-DGE), or poly(ethylene glycol) diglycidyl ether (PEG-DGE). Cross-linking with the former reagent led to robust colloidosomes that survived the removal of the internal oil phase on washing with excess alcohol, as judged by optical microscopy and SEM. PPG-TDI reacted very rapidly with the PEI stabilizer chains, with cross-linking being achieved during homogenization. Well-defined colloidosomes could be formed only by using sunflower oil and isononyl isononanoate with this cross-linker at 20 °C. However, cooling to 0 °C allowed colloidosomes to be formed using n-dodecane, presumably because of the slower rate of cross-linking at this reduced temperature. PPG-DGE proved to be a more generic cross-linker because it formed robust colloidosomes with all four model oils. However, cross-linking was much slower than that achieved using PPG-TDI, with intact colloidosomes being formed only after ∼12 h at 20 °C. The PEG-DGE cross-linker allowed cross-linking to be conducted at 20 °C from the aqueous phase (rather from within the oil droplets for the oil-soluble PPG-TDI or PPG-DGE cross-linkers). In this case, well-defined colloidosomes were obtained at 50 vol % with surprisingly little intercolloidosome aggregation, as judged by laser diffraction studies.
Polymer Chemistry | 2010
Elizabeth S. Read; Kate L. Thompson; Steven P. Armes
A series of well-defined primary amine-based AB diblock copolymers were synthesised via atom transfer radical polymerisation (ATRP) using 2-aminoethyl methacrylate hydrochloride (AMA), with the other block comprising the following comonomers: 2-(diisopropylamino)ethyl methacrylate (DPA), 2-hydroxypropyl methacrylate (HPMA) and 2-(methacryloyloxy)ethyl phosphorylcholine (MPC). These copolymers were prepared with reasonably narrow polydispersities (Mw/Mn ≈ 1.1–1.4) in either 80 : 20 or 95 : 5 2-propanol–water mixtures at 50 °C using a 2-(N-morpholino)ethyl isobutyryl bromide initiator. The chain extension efficiency of PAMA was also investigated using a further charge of AMA. Unfortunately, such ‘self-blocking’ was problematic due to both catalyst deactivation and termination of the living chain ends. Nevertheless, low polydispersity all-methacrylic diblock copolymers were obtained in high yields via sequential monomer addition, provided that AMA was used as the second monomer in such syntheses. PAMA49 homopolymer and selected PAMA-based copolymers were reacted with various acrylates and acrylamides in aqueous solution at pH 9, with mean degrees of functionalisation being determined by 1H NMR spectroscopy. This facile Michael addition chemistry provides access to a library of novel functional water-soluble homopolymers and diblock copolymers.
Langmuir | 2015
Kate L. Thompson; Charlotte J. Mable; Jacob A. Lane; Mathew J. Derry; Lee A. Fielding; Steven P. Armes
The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers.
Soft Matter | 2011
Damien Dupin; Kate L. Thompson; Steven P. Armes
Sterically-stabilised polystyrene latex particles prepared with a new polyacid macromonomer are sufficiently hydrophobic at low pH to stabilise ‘liquid marbles’. Such ‘liquid marbles’ remain intact when placed on the surface of liquid water adjusted to pH 4 or below. Moreover, addition of base to this aqueous solution causes immediate destruction of the ‘liquid marble’ since the stabiliser chains become highly hydrophilic above pH 5.5.
Langmuir | 2010
Kate L. Thompson; Iveta Bannister; Steven P. Armes; Andrew L. Lewis
A range of well-defined methacrylic macromonomers based on the biomimetic monomer 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) were synthesized by atom-transfer radical polymerization (ATRP) in alcoholic media using 2-(dimethylamino)ethyl-2-bromoisobutyrylamide. This tertiary amine-functionalized initiator was used to produce homopolymer precursors of various chain lengths via ATRP. These polymerizations were relatively well controlled (M(w)/M(n) < or = 1.30), provided that the target degree of polymerization (DP) did not exceed 30. For higher target DPs, polymerization was only poorly controlled and characterized by broad molecular weight distributions (M(w)/M(n) = 1.50-2.31). The tertiary amine end-group of each nearly monodisperse homopolymer precursor was then quaternized using 4-vinylbenzyl chloride (4-VBC) to afford the corresponding styrene-functionalized macromonomers. PMPC(30) macromonomer proved to be an effective reactive steric stabilizer for the formation of polystyrene latexes when employed at 10 w/w % on the basis of the styrene monomer. Nearly monodisperse submicrometer-sized and micrometer-sized latexes were prepared by aqueous emulsion and alcoholic dispersion polymerization, respectively, as judged by scanning electron microscopy and dynamic light scattering studies. In contrast, attempted alcoholic dispersion polymerization conducted either in the presence of the PMPC(30) homopolymer precursor or in the absence of any macromonomer always resulted in macroscopic precipitation. Such control experiments confirmed the importance of the terminal styrene groups on the macromonomer chains for successful latex formation. FTIR spectroscopy indicated the presence of the PMPC(30) macromonomer within the polystyrene latex, and XPS studies indicated that these stabilizer chains are located at (or very near) the latex surface, as expected. Using PMPC(20) and PMPC(10) macromonomers for the alcoholic dispersion polymerization of styrene led to latexes with substantially broader size distributions compared to those produced using the PMPC(30) macromonomer under the same conditions. Finally, these new sterically stabilized latexes exhibit excellent freeze-thaw stability and salt tolerance.
Langmuir | 2012
Kate L. Thompson; Emma C. Giakoumatos; Seher Ata; Grant B. Webber; Steven P. Armes; Erica J. Wanless
The interactions of two 2-mm pendant oil droplets grown in the presence of an aqueous solution of poly(glycerol monomethacrylate)-stabilized polystyrene latex particles was observed using a high-speed video camera. The coalescence behavior was monitored as a function of oil type (n-dodecane versus sunflower oil) and particle size (135 versus 902 nm), as well as in the presence and absence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol)]. The damping coefficient of the coalescing n-dodecane droplets was found to increase in the presence of the latex, demonstrating particle adsorption. Coalescence times increased when the oil phase was changed from n-dodecane to sunflower oil, because of the much higher viscosity of the latter oil. In addition, increasing the adsorbed particle size from 135 to 902 nm led to longer coalescence times because of the greater distance separating the oil droplets. Coalescence times observed in the presence of the larger 902-nm particles indicated that two different modes of contact can occur prior to a coalescence event (bilayer or bridging monolayer of particles in the film). Addition of an oil-soluble surface-active cross-linker to the sunflower oil phase to react with the hydroxy groups of the particle stabilizer reduced the interfacial elasticity and ultimately prevented coalescence after cross-linking for 20 min at 25 °C. Such giant colloidosomes can remain in contact for several hours without undergoing coalescence, which demonstrates their high stability. Furthermore, coalescence is prevented even if the cross-linker is present in only one of the pendant droplets. Finally, evidence for cross-linker diffusion from one pendant droplet to another was indicated by a visible filament connecting the two droplets upon retraction.
Langmuir | 2012
K. M. Reed; Josef Borovička; Tommy S. Horozov; Vesselin N. Paunov; Kate L. Thompson; A. Walsh; Steven P. Armes
A series of five near-monodisperse sterically stabilized polystyrene (PS) latexes were synthesized using three well-defined poly(glycerol monomethacrylate) (PGMA) macromonomers with mean degrees of polymerization (DP) of 30, 50, or 70. The surface coverage and grafting density of the PGMA chains on the particle surface were determined using XPS and (1)H NMR spectroscopy, respectively. The wettability of individual latex particles adsorbed at the air-water and n-dodecane-water interfaces was studied using both the gel trapping technique and the film calliper method. The particle equilibrium contact angle at both interfaces is relatively insensitive to the mean DP of the PGMA stabilizer chains. For a fixed stabilizer DP of 30, particle contact angles were only weakly dependent on the particle size. The results are consistent with a model of compact hydrated layers of PGMA stabilizer chains at the particle surface over a wide range of grafting densities. Our approach could be utilized for studying the adsorption behavior of a broader range of sterically stabilized inorganic and polymeric particles of practical importance.