Kate M. Wassum
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kate M. Wassum.
The Journal of Neuroscience | 2007
Joseph F. Cheer; Kate M. Wassum; Leslie A. Sombers; Michael L. Heien; Jennifer L. Ariansen; Brandon J. Aragona; Paul E. M. Phillips; R. Mark Wightman
Transient surges of dopamine in the nucleus accumbens are associated with drug seeking. Using a voltammetric sensor with high temporal and spatial resolution, we demonstrate differences in the temporal profile of dopamine concentration transients caused by acute doses of nicotine, ethanol, and cocaine in the nucleus accumbens shell of freely moving rats. Despite differential release dynamics, all drug effects are uniformly inhibited by administration of rimonabant, a cannabinoid receptor (CB1) antagonist, suggesting that an increase in endocannabinoid tone facilitates the effects of commonly abused drugs on subsecond dopamine release. These time-resolved chemical measurements provide unique insight into the neurobiological effectiveness of rimonabant in treating addictive disorders.
The Journal of Neuroscience | 2004
Joseph F. Cheer; Kate M. Wassum; Michael L. Heien; Paul E. M. Phillips; R. Mark Wightman
Dopaminergic neurotransmission has been highly implicated in the reinforcing properties of many substances of abuse, including marijuana. Cannabinoids activate ventral tegmental area dopaminergic neurons, the main ascending projections of the mesocorticolimbic dopamine system, and change their spiking pattern by increasing the number of impulses in a burst and elevating the frequency of bursts. Although they also increase time-averaged striatal dopamine levels for extended periods of time, little is known about the temporal structure of this change. To elucidate this, fast-scan cyclic voltammetry was used to monitor extracellular dopamine in the nucleus accumbens of freely moving rats with subsecond timescale resolution. Intravenous administration of the central cannabinoid (CB1) receptor agonist, R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl) methanone mesylate, dose-dependently produced catalepsy, decreased locomotion, and reduced the amplitude of electrically evoked dopamine release while markedly increasing the frequency of detected (nonstimulated) dopamine concentration transients. The CB1 receptor antagonist [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide] reversed and prevented all agonist-induced effects but did not show effects on dopamine release when injected alone. These data demonstrate that doses of a cannabinoid agonist known to increase burst firing produce ongoing fluctuations in extracellular dopamine on a previously unrecognized temporal scale in the nucleus accumbens.
European Journal of Neuroscience | 2007
R. Mark Wightman; Michael L. Heien; Kate M. Wassum; Leslie A. Sombers; Brandon J. Aragona; Amina S. Khan; Jennifer L. Ariansen; Joseph F. Cheer; Paul E. M. Phillips; Regina M. Carelli
Many individual neurons within the intact brain fire in stochastic patterns that arise from interactions with the neuronal circuits that they comprise. However, the chemical communication that is evoked by these firing patterns has not been characterized because sensors suitable to monitor subsecond chemical events in micron dimensions have only recently become available. Here we employ a voltammetric sensor technology coupled with principal component regression to examine the dynamics of dopamine concentrations in the nucleus accumbens (NAc) of awake and unrestrained rats. The sensor has submillimeter dimensions and provides high temporal (0.1 s) resolution. At select locations spontaneous dopamine transient concentration changes were detected, achieving instantaneous concentrations of ∼50 nm. At other locations, transients were absent even though dopamine was available for release as shown by extracellular dopamine increases following electrical activation of dopaminergic neurons. At sites where dopamine concentration transients occur, uptake inhibition by cocaine enhances the frequency and magnitude of the rapid transients while also causing a more gradual increase in extracellular dopamine. These effects were largely absent from sites that did not support ongoing transient activity. These findings reveal an unanticipated spatial and temporal heterogeneity of dopamine transmission within the NAc that may depend upon the firing of specific subpopulations of dopamine neurons.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Kate M. Wassum; Sean B. Ostlund; Nigel T. Maidment; Bernard W. Balleine
It generally is assumed that a common neural substrate mediates both the palatability and the reward value of nutritive events. However, recent evidence suggests this assumption may not be true. Whereas opioid circuitry in both the nucleus accumbens and ventral pallidum has been reported to mediate taste-reactivity responses to palatable events, the assignment of reward or inventive value to goal-directed actions has been found to involve the basolateral amygdala. Here we found that, in rats, the neural processes mediating palatability and incentive value are indeed dissociable. Naloxone infused into either the ventral pallidum or nucleus accumbens shell blocked the increase in sucrose palatability induced by an increase in food deprivation without affecting the performance of sucrose-related actions. Conversely, naloxone infused into the basolateral amygdala blocked food deprivation-induced changes in sucrose-related actions without affecting sucrose palatability. This double dissociation of opioid-mediated changes in palatability and incentive value suggests that the role of endogenous opioids in reward processing does not depend on a single neural circuit. Rather, changes in palatability and in the incentive value assigned to rewarding events seem to be mediated by distinct neural processes.
Sensors | 2008
Kate M. Wassum; Vanessa M. Tolosa; Jianjun Wang; Eric Walker; Harold G. Monbouquette; Nigel T. Maidment
Using Micro-Electro-Mechanical-Systems (MEMS) technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs) modified with glutamate oxidase (GluOx) for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.
Learning & Memory | 2011
Kate M. Wassum; Sean B. Ostlund; Bernard W. Balleine; Nigel T. Maidment
Here we attempted to clarify the role of dopamine signaling in reward seeking. In Experiment 1, we assessed the effects of the dopamine D(1)/D(2) receptor antagonist flupenthixol (0.5 mg/kg i.p.) on Pavlovian incentive motivation and found that flupenthixol blocked the ability of a conditioned stimulus to enhance both goal approach and instrumental performance (Pavlovian-to-instrumental transfer). In Experiment 2 we assessed the effects of flupenthixol on reward palatability during post-training noncontingent re-exposure to the sucrose reward in either a control 3-h or novel 23-h food-deprived state. Flupenthixol, although effective in blocking the Pavlovian goal approach, was without effect on palatability or the increase in reward palatability induced by the upshift in motivational state. This noncontingent re-exposure provided an opportunity for instrumental incentive learning, the process by which rats encode the value of a reward for use in updating reward-seeking actions. Flupenthixol administered prior to the instrumental incentive learning opportunity did not affect the increase in subsequent off-drug reward-seeking actions induced by that experience. These data suggest that although dopamine signaling is necessary for Pavlovian incentive motivation, it is not necessary for changes in reward experience, or for the instrumental incentive learning process that translates this experience into the incentive value used to drive reward-seeking actions, and provide further evidence that Pavlovian and instrumental incentive learning processes are dissociable.
Neuroscience & Biobehavioral Reviews | 2015
Kate M. Wassum; Alicia Izquierdo
Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action.
The Journal of Neuroscience | 2011
Sean B. Ostlund; Kate M. Wassum; Niall P. Murphy; Bernard W. Balleine; Nigel T. Maidment
Tonic dopamine (DA) signaling is widely regarded as playing a central role in effort-based decision making and in the motivational control of instrumental performance. The current study used microdialysis to monitor changes in extracellular DA levels across subregions of the nucleus accumbens and dorsal striatum of rats as they lever pressed for food reward on a probabilistic schedule of reinforcement, a procedure that ensured they would experience variation in the amount of effort needed to earn rewards across tests. Each rat was given three tests. Rats were hungry for the first and last test, but were sated on food before the middle test, allowing us to assess the effects of a downshift in motivational state on task performance and conditioning-induced DA efflux. During hungry tests, DA levels rose in both the shell and core of the accumbens and, to a lesser degree, in both the medial and lateral divisions of the dorsal striatum. Interestingly, changes in DA efflux across hungry tests in the accumbens core were negatively correlated with changes in the effort required to obtain rewards. We also found that—across regions—the DA response to instrumental conditioning was attenuated when rats were sated before testing. Furthermore, the effect of satiety on DA efflux in the accumbens shell was positively correlated with its effect on task performance. Together, the results indicate that tonic DA contributes to the control of instrumental performance by conveying information about the costs and benefits of responding to different striatal subregions.
The Journal of Neuroscience | 2012
Kate M. Wassum; Vanessa M. Tolosa; Tina T.-C. Tseng; Bernard W. Balleine; Harold G. Monbouquette; Nigel T. Maidment
The ability to make rapid, informed decisions about whether or not to engage in a sequence of actions to earn reward is essential for survival. Modeling in rodents has demonstrated a critical role for the basolateral amygdala (BLA) in such reward-seeking actions, but the precise neurochemical underpinnings are not well understood. Taking advantage of recent advancements in biosensor technologies, we made spatially discrete near-real-time extracellular recordings of the major excitatory transmitter, glutamate, in the BLA of rats performing a self-paced lever-pressing sequence task for sucrose reward. This allowed us to detect rapid transient fluctuations in extracellular BLA glutamate time-locked to action performance. These glutamate transients tended to precede lever-pressing actions and were markedly increased in frequency when rats were engaged in such reward-seeking actions. Based on muscimol and tetrodotoxin microinfusions, these glutamate transients appeared to originate from the terminals of neurons with cell bodies in the orbital frontal cortex. Importantly, glutamate transient amplitude and frequency fluctuated with the value of the earned reward and positively predicted lever-pressing rate. Such novel rapid glutamate recordings during instrumental performance identify a role for glutamatergic signaling within the BLA in instrumental reward-seeking actions.
Biological Psychiatry | 2013
Kate M. Wassum; Sean B. Ostlund; Gabriel C. Loewinger; Nigel T. Maidment
BACKGROUND Recent theories addressing mesolimbic dopamines role in reward processing emphasize two apparently distinct functions, one in reinforcement learning (i.e., prediction error) and another in incentive motivation (i.e., the invigoration of reward seeking elicited by reward-paired cues). Here, we evaluate the latter. METHODS Using fast-scan cyclic voltammetry, we monitored, in real time, dopamine release in the nucleus accumbens core of rats (n = 9) during a Pavlovian-to-instrumental transfer task in which the effects of a reward-predictive cue on an independently trained instrumental action were assessed. Voltammetric data were parsed into slow and phasic components to determine whether these forms of dopamine signaling were differentially related to task performance. RESULTS We found that a reward-paired cue, which increased reward-seeking actions, induced an increase in phasic mesolimbic dopamine release and produced slower elevations in extracellular dopamine. Interestingly, phasic dopamine release was temporally related to and positively correlated with lever-press activity generally, while slow dopamine changes were not significantly related to such activity. Importantly, the propensity of the reward-paired cue to increase lever pressing was predicted by the amplitude of phasic dopamine release events, indicating a possible mechanism through which cues initiate reward-seeking actions. CONCLUSIONS These data suggest that those phasic mesolimbic dopamine release events thought to signal reward prediction error may also be related to the incentive motivational impact of reward-paired cues on reward-seeking actions.