Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Maher is active.

Publication


Featured researches published by Kate Maher.


Science | 2014

Hydrologic regulation of chemical weathering and the geologic carbon cycle.

Kate Maher; C. P. Chamberlain

Hydrologic Thermostat When the silicate-rich rocks and minerals in Earths interior are uplifted and exposed to Earths surface, they dissolve. On a geologic time scale, this chemical weathering process ultimately creates a sink for CO2, thereby influencing global temperatures. Maher and Chamberlain (p. 1502, published online 13 March) developed a theoretical framework for understanding the fundamental relationship between weathering, tectonics, and the geological carbon cycle. The analysis suggests that temperature plays less of a role in regulating chemical weathering—which is dependent on the balance of tectonic uplift and erosion—than runoff on continents and the time that silicate minerals are exposed to fluids. Plateaus in weathering fluxes with increasing runoff or temperature allows for the stabilization of atmospheric CO2 despite high rates of uplift or erosion. Consumption of carbon dioxide through silicate weathering is regulated by the intensity of the hydrologic cycle. Earth’s temperature is thought to be regulated by a negative feedback between atmospheric CO2 levels and chemical weathering of silicate rocks that operates over million-year time scales. To explain variations in the strength of the weathering feedback, we present a model for silicate weathering that regulates climatic and tectonic forcing through hydrologic processes and imposes a thermodynamic limit on weathering fluxes, based on the physical and chemical properties of river basins. Climate regulation by silicate weathering is thus strongest when global topography is elevated, similar to the situation today, and lowest when global topography is more subdued, allowing planetary temperatures to vary depending on the global distribution of topography and mountain belts, even in the absence of appreciable changes in CO2 degassing rates.


Inorganic Chemistry | 2013

Environmental Speciation of Actinides

Kate Maher; John R. Bargar; Gordon E. Brown

Although minor in abundance in Earths crust (U, 2-4 ppm; Th, 10-15 ppm) and in seawater (U, 0.003 ppm; Th, 0.0007 ppm), light actinides (Th, Pa, U, Np, Pu, Am, and Cm) are important environmental contaminants associated with anthropogenic activities such as the mining and milling of uranium ores, generation of nuclear energy, and storage of legacy waste resulting from the manufacturing and testing of nuclear weapons. In this review, we discuss the abundance, production, and environmental sources of naturally occurring and some man-made light actinides. As is the case with other environmental contaminants, the solubility, transport properties, bioavailability, and toxicity of actinides are dependent on their speciation (composition, oxidation state, molecular-level structure, and nature of the phase in which the contaminant element or molecule occurs). We review the aqueous speciation of U, Np, and Pu as a function of pH and Eh, their interaction with common inorganic and organic ligands in natural waters, and some of the common U-containing minerals. We also discuss the interaction of U, Np, Pu, and Am solution complexes with common Earth materials, including minerals, colloids, gels, natural organic matter (NOM), and microbial organisms, based on simplified model system studies. These surface interactions can inhibit (e.g., sorption to mineral surfaces, formation of insoluble biominerals) or enhance (e.g., colloid-facilitated transport) the dispersal of light actinides in the biosphere and in some cases (e.g., interaction with dissimilatory metal-reducing bacteria, NOM, or Mn- and Fe-containing minerals) can modify the oxidation states and, consequently, the behavior of redox-sensitive light actinides (U, Np, and Pu). Finally, we review the speciation of U and Pu, their chemical transformations, and cleanup histories at several U.S. Department of Energy field sites that have been used to mill U ores, produce fissile materials for reactors and weapons, and store high-level nuclear waste from both civilian and defense operations, including Hanford, WA; Rifle, CO; Oak Ridge, TN; Fernald, OH; Fry Canyon, UT; and Rocky Flats, CO.


Geology | 2010

Climatic and vegetation control on sediment dynamics during the last glacial cycle

Anthony Dosseto; Paul Hesse; Kate Maher; Kirstie Fryirs; Simon Turner

As climate is changing rapidly, there is an increasing need to understand how water and soil resources respond to climate change. Soil and sediment dynamics are sensitive to several external factors such as climate, vegetation type and distribution, human activity, and tectonic activity. However, the relationship between erosion and changes in these factors is difficult to constrain with current available approaches. Here we show that uranium isotopes in sediments from river paleochannels can be used to reconstruct variations in the residence time of sediments in a catchment over the past 100 k.y. We find that sediment residence times increase by an order of magnitude during interglacials compared to glacial periods. This is interpreted as a change in sediment stores in the landscape that are tapped by catchment erosion: young, upland soils during glacial periods, reworking of old alluvial sediments during interglacials. A direct correlation is found between the sediment residence time and climatic parameters (sea-surface temperature, atmospheric carbon dioxide content, and paleorainfall estimates), suggesting that during a glacial cycle, sediment dynamics closely follow variations in climate. However, this relationship is not simple because there is no correlation between sediment residence time and paleodischarge estimates. Because sediment residence time variations correlate with changes in vegetation inferred from pollen data, it is hypothesized that the influence of climate on erosion over a glacial cycle may be indirect, and operates via the influence of climate on the type of plant ecosystems within a catchment. If verified elsewhere, this conclusion would emphasize the important role of biology in the physical evolution of Earths surface, here observed over a 100 k.y. time scale.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Marine anoxia and delayed Earth system recovery after the end-Permian extinction

Kimberly V. Lau; Kate Maher; Demir Altiner; Brian M. Kelley; Lee R. Kump; Daniel J. Lehrmann; Juan Carlos Silva-Tamayo; K. L. Weaver; Meiyi Yu; Jonathan L. Payne

Significance The end-Permian mass extinction not only decimated taxonomic diversity but also disrupted the functioning of global ecosystems and the stability of biogeochemical cycles. Explaining the 5-million-year delay between the mass extinction and Earth system recovery remains a fundamental challenge in both the Earth and biological sciences. We use coupled records of uranium concentrations and isotopic compositions to constrain global marine redox conditions across the end-Permian extinction horizon and through the subsequent 17 million years of Earth system recovery. Our finding that the trajectory of biological and biogeochemical recovery corresponds to variations in an ocean characterized by extensive, shallow marine anoxia provides, to our knowledge, the first unified explanation for these observations. Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and 238U/235U isotopic compositions (δ238U) of Upper Permian−Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ238U across the end-Permian extinction horizon, from ∼3 ppm and −0.15‰ to ∼0.3 ppm and −0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans—characterized by prolonged shallow anoxia that may have impinged onto continental shelves—global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.


Reviews of Geophysics | 2010

Isotopic approaches for quantifying the rates of marine burial diagenesis

Matthew S. Fantle; Kate Maher; Donald J. DePaolo

[1] Diagenetic reactions in marine sediments have the potential to alter geochemical proxy records and affect the global carbon cycle over tens of thousands to millions of years. This article describes advances in the use of Ca, Sr, and U series isotopes in constraining carbonate recrystallization and silicate dissolution rates in marine systems. We specifically focus on recent efforts that interpret isotope variability in marine pore fluids using reactive transport models of varying complexity. Such studies suggest that calcite recrystallization rates are significant over time scales <1 Myr, approaching exchange rates of 0.4–1 Myr −1 . Over longer time scales, isotopic data point to continued exchange between calcite and coexisting pore fluid, though at lower rates than in young sediments. Extrapolating these recrystallization rates over tens of millions of years, we quantify the extent to which geochemical climate proxies such as Mg/Ca in calcite can be altered diagenetically. In some cases, such diagenetic effects significantly affect the interpretation of long‐term climatic trends, as well as determinations of absolute paleotemperatures. Silicate dissolution rates in siliclastic marine sediments appear to be similar in magnitude to dissolution rates in terrestrial environments (10 −7 –10 −6 yr −1 ). Such estimates suggest that silicate weathering in marine sediments may play an important role in the carbon cycle, at least over time scales approaching 400–500 kyr.


Geological Society of America Bulletin | 2014

Rise and Fall of Late Pleistocene Pluvial Lakes in Response to Reduced Evaporation and Precipitation: Evidence from Lake Surprise, California

Daniel E. Ibarra; Anne E. Egger; K. L. Weaver; Caroline R. Harris; Kate Maher

Widespread late Pleistocene lake systems of the Basin and Range Province indicate substantially greater moisture availability during glacial periods relative to modern times, but the climatic factors that drive changes in lake levels are poorly constrained. To better constrain these climatic forcing factors, we present a new lacustrine paleoclimate record and precipitation estimates for Lake Surprise, a closed basin lake in northeastern California. We combine a detailed analysis of lake hydrography and constitutive relationships describing the water balance to determine the influence of precipitation, evaporation, temperature, and seasonal insolation on past lake levels. At its maximum extent, during the last deglaciation, Lake Surprise covered 1366 km 2 (36%) of the terminally draining Surprise Valley watershed. Using paired radiocarbon and 230 Th-U analyses, we dated shoreline tufa deposits from wave-cut lake terraces in Surprise Valley, California, to determine the hydrography of the most recent lake cycle. This new lake hydrograph places the highest lake level 176 m above the present-day playa at 15.19 ± 0.18 calibrated ka ( 14 C age). This significantly postdates the Last Glacial Maximum (LGM), when Lake Surprise stood at only moderate levels, 65–99 m above modern playa, similar to nearby Lake Lahontan. To evaluate the climatic factors associated with lake-level changes, we use an oxygen isotope mass balance model combined with an analysis of predictions from the Paleoclimate Model Intercomparison Project 3 (PMIP3) climate model ensemble. Our isotope mass balance model predicts minimal precipitation increases of only 2%–18% during the LGM relative to modern, compared to an ∼75% increase in precipitation during the 15.19 ka highstand. LGM PMIP3 climate model simulations corroborate these findings, simulating an average precipitation increase of only 6.5% relative to modern, accompanied by a 28% decrease in total evaporation driven by a 7 °C decrease in mean annual temperature. LGM PMIP3 climate model simulations also suggest a seasonal decoupling of runoff and precipitation, with peak runoff shifting to the late spring–early summer from the late winter–early spring. Our coupled analyses suggest that moderate lake levels during the LGM were a result of reduced evaporation driven by reduced summer insolation and temperatures, not by increased precipitation. Reduced evaporation primed Basin and Range lake systems, particularly smaller, isolated basins such as Surprise Valley, to respond rapidly to increased precipitation during late-Heinrich Stadial 1 (HS1). Post-LGM highstands were potentially driven by increased rainfall during HS1 brought by latitudinally extensive and strengthened midlatitude westerly storm tracks, the effects of which are recorded in the region9s lacustrine and glacial records. These results suggest that seasonal insolation and reduced temperatures have been underinvestigated as long-term drivers of moisture availability in the western United States.


Environmental Science & Technology | 2016

Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry

Noémie Janot; Juan S. Lezama Pacheco; Don Pham; Timothy M. O’Brien; Debra M. Hausladen; Vincent Noël; Florent Lallier; Kate Maher; Scott Fendorf; Kenneth H. Williams; Philip E. Long; John R. Bargar

The Rifle alluvial aquifer along the Colorado River in west central Colorado contains fine-grained, diffusion-limited sediment lenses that are substantially enriched in organic carbon and sulfides, as well as uranium, from previous milling operations. These naturally reduced zones (NRZs) coincide spatially with a persistent uranium groundwater plume. There is concern that uranium release from NRZs is contributing to plume persistence or will do so in the future. To better define the physical extent, heterogeneity and biogeochemistry of these NRZs, we investigated sediment cores from five neighboring wells. The main NRZ body exhibited uranium concentrations up to 100 mg/kg U as U(IV) and contains ca. 286 g of U in total. Uranium accumulated only in areas where organic carbon and reduced sulfur (as iron sulfides) were present, emphasizing the importance of sulfate-reducing conditions to uranium retention and the essential role of organic matter. NRZs further exhibited centimeter-scale variations in both redox status and particle size. Mackinawite, greigite, pyrite and sulfate coexist in the sediments, indicating that dynamic redox cycling occurs within NRZs and that their internal portions can be seasonally oxidized. We show that oxidative U(VI) release to the aquifer has the potential to sustain a groundwater contaminant plume for centuries. NRZs, known to exist in other uranium-contaminated aquifers, may be regionally important to uranium persistence.


Geophysical Research Letters | 2016

The imprint of climate and geology on the residence times of groundwater

Reed M. Maxwell; Laura E. Condon; Stefan Kollet; Kate Maher; Roy Haggerty; Mary Michael Forrester

Surface and subsurface flow dynamics govern residence time or water age until discharge, which is a key metric of storage and water availability for human use and ecosystem function. Although observations in small catchments have shown a fractal distribution of ages, residence times are difficult to directly quantify or measure in large basins. Here we use a simulation of major watersheds across North America to compute distributions of residence times. This simulation results in peak ages from 1.5 to 10.5 years, in agreement with isotopic observations from bomb-derived radioisotopes, and a wide range of residence times—from 0.1 to 10,000 years. This simulation suggests that peak residence times are controlled by the mean hydraulic conductivity, a function of the prevailing geology. The shape of the residence time distribution is dependent on aridity, which in turn determines water table depth and the frequency of shorter flow paths. These model results underscore the need for additional studies to characterize water ages in larger systems.


American Journal of Science | 2014

Uranium isotopes in soils as a proxy for past infiltration and precipitation across the western United States

Kate Maher; Daniel E. Ibarra; Jessica L. Oster; David M. Miller; Joanna L. Redwine; Marith C. Reheis; Jennifer W. Harden

The intermittent presence of large Pleistocene lakes in the southwestern interior of North America, a region that is now a semi-arid desert, suggests repeated oscillations between profoundly different climatic conditions. The origin of these shifts is still unresolved due to inconsistencies in existing climate proxy data (for example, pollen, lake levels, and oxygen isotopes in speleothems). To resolve the inconsistencies in the water balance over the last 10 to 60 kyr, we use uranium isotopic variations in secondary soil minerals to quantify net infiltration and precipitation along a north-south transect in western North America. We show that winter infiltration increased by 30 to 100 percent, and precipitation by a lesser amount, in the valleys of the Great Basin and Mojave deserts between 60 and ∼26 ka. This increase in infiltration and precipitation preceded the Last Glacial Maximum (LGM) and the timing of most lake highstands in the region by 5 to 10 kyr, respectively, suggesting a possible Last Precipitation Maximum (LPM) that coincided with a minimum in winter insolation. Subsequent decreases in infiltration and precipitation after the LGM can be reconciled with the timing of lake highstands if colder summer temperatures due to a minimum in summer insolation reduced lake evaporation. The soil records, combined with a range of proxy data, suggest that seasonal insolation is the long-term driver for large shifts in both precipitation and surface water variability in the region.


Environmental Science & Technology | 2015

Isotopic and Geochemical Tracers for U(VI) Reduction and U Mobility at an in Situ Recovery U Mine

Anirban Basu; John N. Christensen; Donald J. DePaolo; Paul W. Reimus; Jeffrey M. Heikoop; Giday WoldeGabriel; Ardyth M. Simmons; Brian M. House; Matt Hartmann; Kate Maher

In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Postmining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers (238)U/(235)U (δ(238)U), (234)U/(238)U activity ratio, and (34)S/(32)S (δ(34)S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The δ(238)U in Rosita groundwater varies from +0.61‰ to -2.49‰, with a trend toward lower δ(238)U in downgradient wells. The concurrent decrease in U(VI) concentration and δ(238)U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic (234)U/(238)U activity ratio and δ(34)S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.

Collaboration


Dive into the Kate Maher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl I. Steefel

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John N. Christensen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Bargar

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge