Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate McInnerney is active.

Publication


Featured researches published by Kate McInnerney.


Clinical Cancer Research | 2008

New Two-Photon Activated Photodynamic Therapy Sensitizers Induce Xenograft Tumor Regressions after Near-IR Laser Treatment through the Body of the Host Mouse

Jean R. Starkey; Aleksander Rebane; Mikhail Drobizhev; Fanqing Meng; Aijun Gong; Aleisha Elliott; Kate McInnerney; Charles W. Spangler

Purpose: The aim of this study was to show that novel photodynamic therapy (PDT) sensitizers can be activated by two-photon absorption in the near-IR region of the spectrum and to show, for the first time, that such activation can lead to tumor regressions at significant tissue depth. These experiments also evaluated effects of high-energy femtosecond pulsed laser irradiation on normal tissues and characterized the response of xenograft tumors to our PDT protocols. Experimental Design: Human small cell lung cancer (NCI-H69), non-small cell lung cancer (A549), and breast cancer (MDA-MB-231) xenografts were induced in SCID mice. Irradiation of sensitized tumors was undertaken through the bodies of tumor-bearing mice to give a treatment depth of 2 cm. Posttreatment tumor regressions and histopathology were carried out to determine the nature of the response to these new PDT agents. Microarray expression profiles were conducted to assess the similarity of responses to single and two-photon activated PDT. Results: Regressions of all tumor types tested were seen. Histopathology was consistent with known PDT effects, and no, or minimal, changes were noted in irradiated normal tissues. Cluster analysis of microarray expression profiling showed reproducible changes in transcripts associated with apoptosis, stress, oxygen transport, and gene regulation. Conclusions: These new PDT sensitizers can be used at a depth of 2 cm to produce excellent xenograft regressions. The tumor response was consistent with known responses to single-photon activated PDT. Experiments in larger animals are warranted to determine the maximal achievable depth of treatment.


BMC Microbiology | 2011

Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes

Patrick R. Secor; Garth A. James; Philip Fleckman; Kate McInnerney; Philip S. Stewart

BackgroundMany chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. Staphylococcus aureus is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen.ResultsThe impact of S. aureus soluble products in biofilm-conditioned medium (BCM) or in planktonic-conditioned medium (PCM) on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic S. aureus was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, S. aureus biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms.ConclusionsCollectively the results indicate that S. aureus biofilms induce a distinct inflammatory response compared to their planktonic counterparts. The differential gene expression and production of inflammatory cytokines by biofilm and planktonic cultures in keratinocytes could have implications for the formation and persistence of chronic wounds. The formation of a biofilm should be considered in any study investigating host response to bacteria.


Journal of Immunology | 2008

Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase-Independent Resistance to Aspergillus fumigatus in Alveolar Macrophages

E. Jean Cornish; Brady J. Hurtgen; Kate McInnerney; Nancy L. Burritt; Ross M. Taylor; James N. Jarvis; Shirley Y. Wang; James B. Burritt

The fungal pathogen Aspergillus fumigatus is responsible for increasing numbers of fatal infections in immune-compromised humans. Alveolar macrophages (AM) are important in the innate defense against aspergillosis, but little is known about their molecular responses to fungal conidia in vivo. We examined transcriptional changes and superoxide release by AM from C57BL/6 and gp91phox−/− mice in response to conidia. Following introduction of conidia into the lung, microarray analysis of AM showed the transcripts most strongly up-regulated in vivo to encode chemokines and additional genes that play a critical role in neutrophil and monocyte recruitment, indicating that activation of phagocytes represents a critical early response of AM to fungal conidia. Of the 73 AM genes showing ≥2-fold changes, 8 were also increased in gp91phox−/− mice by conidia and in C57BL/6 mice by polystyrene beads, suggesting a common innate response to particulate matter. Ingenuity analysis of the microarray data from C57BL/6 mice revealed immune cell signaling and gene expression as primary mechanisms of this response. Despite the well-established importance of phagocyte NADPH oxidase in resisting aspergillosis, we found no evidence of this mechanism in AM following introduction of conidia into the mouse lung using transcriptional, luminometry, or NBT staining analysis. In support of these findings, we observed that AM from C57BL/6 and gp91phox−/− mice inhibit conidial germination equally in vitro. Our results indicate that early transcription in mouse AM exposed to conidia in vivo targets neutrophil recruitment, and that NADPH oxidase-independent mechanisms in AM contribute to inhibition of conidial germination.


BMC Genomics | 2007

Yeast genomic expression patterns in response to low-shear modeled microgravity

Kathy B. Sheehan; Kate McInnerney; Boloroo Purevdorj-Gage; Sara D. Altenburg; Linda E. Hyman

The low-shear microgravity environment, modeled by rotating suspension culture bioreactors called high aspect ratio vessels (HARVs), allows investigation in ground-based studies of the effects of microgravity on eukaryotic cells and provides insights into the impact of space flight on cellular physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) causes significant phenotypic changes of a select group of Saccharomyces cerevisiae genes associated with the establishment of cell polarity, bipolar budding, and cell separation. However, the mechanisms cells utilize to sense and respond to microgravity and the fundamental gene expression changes that occur are largely unknown. In this study, we examined the global transcriptional response of yeast cells grown under LSMMG conditions using DNA microarray analysis in order to determine if exposure to LSMMG results in changes in gene expression.ResultsLSMMG differentially changed the expression of a significant number of genes (1372) when yeast cells were cultured for either five generations or twenty-five generations in HARVs, as compared to cells grown under identical conditions in normal gravity. We identified genes in cell wall integrity signaling pathways containing MAP kinase cascades that may provide clues to novel physiological responses of eukaryotic cells to the external stress of a low-shear modeled microgravity environment. A comparison of the microgravity response to other environmental stress response (ESR) genes showed that 26% of the genes that respond significantly to LSMMG are involved in a general environmental stress response, while 74% of the genes may represent a unique transcriptional response to microgravity. In addition, we found changes in genes involved in budding, cell polarity establishment, and cell separation that validate our hypothesis that phenotypic changes observed in cells grown in microgravity are reflected in genome-wide changes.This study documents a considerable response to yeast cell growth in low-shear modeled microgravity that is evident, at least in part, by changes in gene expression. Notably, we identified genes that are involved in cell signaling pathways that allow cells to detect environmental changes, to respond within the cell, and to change accordingly, as well as genes of unknown function that may have a unique transcriptional response to microgravity. We also uncovered significant changes in the expression of many genes involved in cell polarization and bud formation that correlate well with the phenotypic effects observed in yeast cells when grown under similar conditions. These results are noteworthy as they have implications for human space flight.


American Journal of Pathology | 2010

Type-I IFN signaling suppresses an excessive IFN-γ response and thus prevents lung damage and chronic inflammation during Pneumocystis (PC) clearance in CD4 T cell-competent mice.

Nicole Meissner; Steve D. Swain; Kate McInnerney; Soo Han; Allen G. Harmsen

Immune-reconstitution after highly active antiretroviral therapy (HAART) is often incomplete, and some HIV-infected individuals fail to regenerate type-I interferon (IFN)-producing pDCs. We recently demonstrated that during Pneumocystis (PC) infection in CD4 T cell-competent mice the absence of type-I IFN signaling results in chronic pulmonary inflammation and fibrosis despite clearance. Because the mechanisms involved are poorly understood, we further characterized the role of type-I IFN signaling in immune responses to PC. We show that type-I IFN signaling around day 7 postinfection is critical to the outcome of inflammation. Microarray analysis of pulmonary CD11c(+) cells revealed that at day 7 post infection, wild-type cells up-regulated type-I IFN-responsive genes as well as SOCS1, which is a critical negative-regulator of type-I IFN and IFN-gamma signaling. This was associated with an eosinophilic lung inflammation, PC clearance, and complete restitution. However, pulmonary CD11c(+) cells from IFNAR(-/-) mice demonstrated increased tumor necrosis factor (TNF)-alpha production and lacked SOCS1-induction at day 7. This was followed by a transient lymphocytic and IFN-gamma response before switching to a chronic eosinophilic inflammation of the lung. Early neutralization of TNF-alpha did not prevent chronic inflammation in IFNAR(-/-) mice, but treatment with an anti-IFN-gamma antibody did. We propose that during PC lung infection type-I IFNs induce SOCS1-associated regulatory mechanisms, which prevent excessive IFN-gamma-mediated responses that cause chronic lung damage. Therefore, partial immune-reconstitution in AIDS, attributable to reduced type-I IFN actions, might disrupt regulatory aspects of inflammation, causing unexplained chronic pulmonary complications as seen in some patients during HAART.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Uncoupling reproduction from metabolism extends chronological lifespan in yeast

Saisubramanian Nagarajan; Arthur L. Kruckeberg; Karen H. Schmidt; Evgueny Kroll; Morgan Hamilton; Kate McInnerney; Ryan Summers; T.A. Taylor; Frank Rosenzweig

Significance All cells age and do so in relation to how many times a cell divides (replicative aging) and how long a nondividing cell can live (chronological aging). Bakers’ yeast has been used to study both, but because yeast divides when nutrient levels permit, the genetics of its chronological lifespan has only been studied under calorie restriction, mimicked by starvation. Because many terminally differentiated animal cells are long-lived and rarely starve, we developed a model of cell lifespan under calorie-unrestricted conditions. When encapsulated and fed ad libitum, yeast goes into cell cycle arrest, continues to be metabolically active, and remains viable for weeks, offering a new experimental paradigm to study chronological lifespan in the absence of calorie restriction. Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions.


PLOS ONE | 2012

Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression.

Patrick R. Secor; Laura K. Jennings; Garth A. James; Kelly R. Kirker; Elinor deLancey Pulcini; Kate McInnerney; Robin Gerlach; Tom Livinghouse; Jonathan K. Hilmer; Brian Bothner; Philip Fleckman; Philip S. Stewart

Staphylococcus aureus biofilms are associated with chronic skin infections and are orders of magnitude more resistant to antimicrobials and host responses. S. aureus contains conserved nonribosomal peptide synthetases that produce the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively). The biological function of these compounds has been speculated to be involved in virulence factor gene expression in S. aureus, protease inhibition in eukaryotic cells, and interspecies bacterial communication. However, the exact biological role of these compounds is unknown. Here, we report that S. aureus biofilms produce greater amounts of phevalin than their planktonic counterparts. Phevalin had no obvious impact on the extracellular metabolome of S. aureus as measured by high-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. When administered to human keratinocytes, phevalin had a modest effect on gene expression. However, conditioned medium from S. aureus spiked with phevalin amplified differences in keratinocyte gene expression compared to conditioned medium alone. Phevalin may be exploited as potential biomarker and/or therapeutic target for chronic, S. aureus biofilm-based infections.


American Journal of Respiratory Cell and Molecular Biology | 2012

Pneumocystis Elicits a STAT6-Dependent, Strain-Specific Innate Immune Response and Airway Hyperresponsiveness

Steve D. Swain; Nicole Meissner; Dan W. Siemsen; Kate McInnerney; Allen G. Harmsen

It is widely held that exposure to pathogens such as fungi can be an agent of comorbidity, such as exacerbation of asthma or chronic obstructive pulmonary disease. Although many studies have examined allergic responses to fungi and their effects on pulmonary function, the possible pathologic implications of the early innate responses to fungal pathogens have not been explored. We examined early responses to the atypical fungus Pneumocystis in two common strains of mice in terms of overall immunological response and related pathology, such as cell damage and airway hyperresponsiveness (AHR). We found a strong strain-specific response in BALB/c mice that included recruitment of neutrophils, NK, NKT, and CD4 T cells. This response was accompanied by elevated indicators of lung damage (bronchoalveolar lavage fluid albumin and LDH) and profound AHR. This early response was absent in C57BL/6 mice, although both strains exhibited a later response associated with the clearance of Pneumocystis. We found that this AHR could not be attributed exclusively to the presence of recruited neutrophils, NKT, NK, or CD4 cells or to the actions of IFN-γ or IL-4. However, in the absence of STAT6 signaling, AHR and inflammatory cell recruitment were virtually absent. Gene expression analysis indicated that this early response included activation of several transcription factors that could be involved in pulmonary remodeling. These results show that exposure to a fungus such as Pneumocystis can elicit pulmonary responses that may contribute to morbidity, even without prior sensitization, in the context of certain genetic backgrounds.


Analytical Biochemistry | 2009

Extraction of RNA from Ca-Alginate Encapsulated Yeast for Transcriptional Profiling

Arthur L. Kruckeberg; Saisubramanian Nagarajan; Kate McInnerney; Frank Rosenzweig

We have developed a method for preparing high-quality total RNA from Ca-alginate-encapsulated Saccharomyces cerevisiae that is suitable for microarray analysis. Encapsulated cells were harvested from immobilized cell reactors and flash-frozen in liquid nitrogen. Following low-temperature mechanical disruption, cells were freed from Ca-alginate by reverse ionotropic gelation and purified by centrifugation, and then total RNA was extracted using hot acid phenol. The yield and quality of the RNA were consistently high; the RNA was free of contaminating alginate, and in microarray analysis it performed as well as RNA isolated from planktonic cells.


Proceedings of SPIE | 2008

Histopathological and expression profiling studies of early tumor responses to near-infrared PDT treatment in SCID mice

Jean R. Starkey; Aleksander Rebane; Mikhail Drobizhev; Fanqin Meng; Aijun Gong; Aleisha Elliott; Kate McInnerney; Elizabeth Pascucci; Charles W. Spangler

A novel class of porphyrin-based near-infrared photodynamic therapy (PDT) sensitizers is studied. We achieve regressions of human small cell lung cancer (NCI-H69), non-small cell lung cancer (A 459) and breast cancer (MDAMB- 231) xenografts in SCID mice at significant tissue depth by irradiation with an amplified femtosecond pulsed laser at 800 nm wavelength. Significant tumor regressions were observed during the first 10-14 days post treatment. Tumor histopathology was consistent with known PDT effects, while no significant changes were noted in irradiated normal tissues. In vivo imaging studies using intravenous injections of fluorescent dextran demonstrated an early loss of tumor blood flow. RNA was isolated from NCI-H69 PDT treated SCID mouse xenografts and paired untreated xenografts at 4 hours post laser irradiation. Similarly RNA was isolated from PDT treated and untreated Lewis lung carcinomas growing in C57/Bl6 mice. Expression profiling was carried out using AffymetrixTM human and mouse GeneChips®. Cluster analysis of microarray expression profiling results demonstrated reproducible increases in transcripts associated with apoptosis, stress, oxygen transport and gene regulation in the PDT treated NCI-H69 samples. In addition, PDT treated Lewis lung carcinomas showed reproducible increases in transcripts associated with immune response and lipid biosynthesis. PDT treated C57/Bl6 mice developed cytotoxic T cell activity towards this tumor, while untreated tumor bearing mice failed to do so.

Collaboration


Dive into the Kate McInnerney's collaboration.

Top Co-Authors

Avatar

Aijun Gong

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garth A. James

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge