Kate Sponagle
Queen's University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kate Sponagle.
Blood | 2013
Natalia Rydz; Laura L. Swystun; Colleen Notley; Andrew D. Paterson; Jacob Riches; Kate Sponagle; Boonchai Boonyawat; Robert R. Montgomery; Paula D. James; David Lillicrap
Genetic variation in or near the C-type lectin domain family 4 member M (CLEC4M) has been associated with plasma levels of von Willebrand factor (VWF) in healthy individuals. CLEC4M is a lectin receptor with a polymorphic extracellular neck region possessing a variable number of tandem repeats (VNTR). A total of 491 participants (318 patients with type 1 von Willebrand disease [VWD] and 173 unaffected family members) were genotyped for the CLEC4M VNTR polymorphism. Family-based association analysis on kindreds with type 1 VWD demonstrated an excess transmission of VNTR 6 to unaffected individuals (P = .0096) and an association of this allele with increased VWF:RCo (P = .029). CLEC4M-Fc bound to VWF. Immunofluorescence and enzyme-linked immunosorbent assay demonstrated that HEK 293 cells transfected with CLEC4M bound and internalized VWF. Cells expressing 4 or 9 copies of the CLEC4M neck region VNTR showed reduced interaction with VWF relative to CLEC4M with 7 VNTR (CLEC4M 4%-60% reduction, P < .001; CLEC4M 9%-45% reduction, P = .006). Mice expressing CLEC4M after hydrodynamic liver transfer have a 46% decrease in plasma levels of VWF (P = .0094). CLEC4M binds to and internalizes VWF, and polymorphisms in the CLEC4M gene contribute to variable plasma levels of VWF.
Blood | 2011
Cynthia M. Pruss; Mia Golder; Andrea Bryant; Carol Hegadorn; Erin Burnett; Kimberly Laverty; Kate Sponagle; Aly Dhala; Colleen Notley; Sandra L. Haberichter; David Lillicrap
Type 1 VWD is the mild to moderate reduction of VWF levels. This study examined the mechanisms underlying 2 common type 1 VWD mutations, the severe R1205H and more moderate Y1584C. In vitro biosynthesis was reduced for both mutations in human and mouse VWF, with the effect being more severe in R1205H. VWF knockout mice received hydrodynamic injections of mouse Vwf cDNA. Lower VWF antigen levels were demonstrated in both homozygous and heterozygous forms for both type 1 mutations from days 14-42. Recombinant protein infusions and hydrodynamic-expressed VWF propeptide to antigen ratios demonstrate that R1205H mouse VWF has an increased clearance rate, while Y1584C is normal. Recombinant ADAMTS13 digestions of Y1584C demonstrated enhanced cleavage of both human and mouse VWF115 substrates. Hydrodynamic-expressed VWF shows a loss of high molecular weight multimers for Y1584C compared with wild-type and R1205H. At normal physiologic levels of VWF, Y1584C showed reduced thrombus formation in a ferric chloride injury model while R1205H demonstrated similar thrombogenic activity to wild-type VWF. This study has elucidated several novel mechanisms for these mutations and highlights that the type 1 VWD phenotype can be recapitulated in the VWF knockout hydrodynamic injection model.
Blood | 2016
Jesse Lai; Paul Moorehead; Kate Sponagle; Katharina Nora Steinitz; Birgit M. Reipert; Christine Hough; David Lillicrap
Inflammatory signals such as pathogen- and danger-associated molecular patterns have been hypothesized as risk factors for the initiation of the anti-factor VIII (FVIII) immune response seen in 25% to 30% of patients with severe hemophilia A (HA). In these young patients, vaccines may be coincidentally administered in close proximity with initial exposure to FVIII, thereby providing a source of such stimuli. Here, we investigated the effects of 3 vaccines commonly used in pediatric patients on FVIII immunogenicity in a humanized HA murine model with variable tolerance to recombinant human FVIII (rhFVIII). Mice vaccinated intramuscularly against the influenza vaccine prior to multiple infusions of rhFVIII exhibited a decreased incidence of rhFVIII-specific neutralizing and nonneutralizing antibodies. Similar findings were observed with the addition of an adjuvant. Upon exposure to media from influenza- or FVIII-stimulated lymph node or splenic lymphocytes, naïve CD4(+) lymphocytes preferentially migrated toward media from influenza-stimulated cells, indicating that antigen competition, by means of lymphocyte recruitment to the immunization site, is a potential mechanism for the observed decrease in FVIII immunogenicity. We also observed no differences in incidence or titer of rhFVIII-specific antibodies and inhibitors in mice exposed to the live-attenuated measles-mumps-rubella vaccine regardless of route of administration. Together, our results suggest that concomitant FVIII exposure and vaccination against influenza does not increase the risk of inhibitor formation and may in fact decrease anti-FVIII immune responses.
Blood | 2014
Yasuaki Shida; Natalia Rydz; David Stegner; Christine Brown; Jeffrey Mewburn; Kate Sponagle; Ozge Danisment; Bredon Crawford; Barbara Vidal; Carol Hegadorn; Cynthia M. Pruss; Bernhard Nieswandt; David Lillicrap
Rare missense mutations in the von Willebrand factor (VWF) A3 domain that disrupt collagen binding have been found in patients with a mild bleeding phenotype. However, the analysis of these aberrant VWF-collagen interactions has been limited. Here, we have developed mouse models of collagen-binding mutants and analyzed the function of the A3 domain using comprehensive in vitro and in vivo approaches. Five loss-of-function (p.S1731T, p.W1745C, p.S1783A, p.H1786D, A3 deletion) and 1 gain-of-function (p.L1757A) variants were generated in the mouse VWF complementary DNA. The results of these various assays were consistent, although the magnitude of the effects were different: the gain-of-function (p.L1757A) variant showed consistent enhanced collagen binding whereas the loss-of-function mutants showed variable degrees of functional deficit. We further analyzed the impact of direct platelet-collagen binding by blocking glycoprotein VI (GPVI) and integrin α2β1 in our ferric chloride murine thrombosis model. The inhibition of GPVI demonstrated a comparable functional defect in thrombosis formation to the VWF(-/-) mice whereas α2β1 inhibition demonstrated a milder bleeding phenotype. Furthermore, a delayed and markedly reduced thrombogenic response was still evident in VWF(-/-), GPVI, and α2β1 blocked animals, suggesting that alternative primary hemostatic mechanisms can partially rescue the bleeding phenotype associated with these defects.
Blood | 2010
Mia Golder; Cynthia M. Pruss; Carol Hegadorn; Jeffrey Mewburn; Kimberly Laverty; Kate Sponagle; David Lillicrap
Blood | 2014
Paul Moorehead; Maria T. Georgescu; Alice S. van Velzen; Kate Sponagle; Barbara Vidal; Birgit M. Reipert; Katharina Nora Steinitz; Christine Hough; David Lillicrap
Blood | 2014
Maria T. Georgescu; Paul Moorehead; Kate Sponagle; Birgit M. Reipert; Christine Hough; David Lillicrap
Blood | 2010
Mia Golder; Cynthia M. Pruss; Kate Sponagle; Carol Hegadorn; Erin Burnett; Andrea Bryant; David Lillicrap
Blood | 2014
Silvia Albánez; Alison Michels; Kate Sponagle; David Lillicrap
Blood | 2012
Paul Moorehead; Braden Waters; Kate Sponagle; Katharina Nora Steinitz; Birgit M. Reipert; David Lillicrap