Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Watt is active.

Publication


Featured researches published by Kate Watt.


Cancer Cell | 2010

Regression of Castrate-Recurrent Prostate Cancer by a Small-Molecule Inhibitor of the Amino-Terminus Domain of the Androgen Receptor

Raymond J. Andersen; Nasrin R. Mawji; Jun Wang; Gang Wang; Simon Haile; Jae-Kyung Myung; Kate Watt; Teresa Tam; Yu Chi Yang; Carmen Adriana Banuelos; David E. Williams; Iain J. McEwan; Yuzhou Wang; Marianne D. Sadar

Castration-recurrent prostate cancer (CRPC) is suspected to depend on androgen receptor (AR). The AF-1 region in the amino-terminal domain (NTD) of AR contains most, if not all, of the transcriptional activity. Here we identify EPI-001, a small molecule that blocked transactivation of the NTD and was specific for inhibition of AR without attenuating transcriptional activities of related steroid receptors. EPI-001 interacted with the AF-1 region, inhibited protein-protein interactions with AR, and reduced AR interaction with androgen-response elements on target genes. Importantly, EPI-001 blocked androgen-induced proliferation and caused cytoreduction of CRPC in xenografts dependent on AR for growth and survival without causing toxicity.


Journal of Clinical Investigation | 2013

An androgen receptor N-terminal domain antagonist for treating prostate cancer

Jae-Kyung Myung; Carmen Adriana Banuelos; Javier Garcia Fernandez; Nasrin R. Mawji; Jun Wang; Amy H. Tien; Yu Chi Yang; Iran Tavakoli; Simon Haile; Kate Watt; Iain J. McEwan; Stephen R. Plymate; Raymond J. Andersen; Marianne D. Sadar

Hormone therapies for advanced prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD), but these ultimately fail and the disease progresses to lethal castration-resistant prostate cancer (CRPC). The mechanisms that drive CRPC are incompletely understood, but may involve constitutively active AR splice variants that lack the LBD. The AR N-terminal domain (NTD) is essential for AR activity, but targeting this domain with small-molecule inhibitors is complicated by its intrinsic disorder. Here we investigated EPI-001, a small-molecule antagonist of AR NTD that inhibits protein-protein interactions necessary for AR transcriptional activity. We found that EPI analogs covalently bound the NTD to block transcriptional activity of AR and its splice variants and reduced the growth of CRPC xenografts. These findings suggest that the development of small-molecule inhibitors that bind covalently to intrinsically disordered proteins is a promising strategy for development of specific and effective anticancer agents.


Nuclear Receptor Signaling | 2007

Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors

Iain J. McEwan; Derek N. Lavery; Katharina Fischer; Kate Watt

Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response.


Journal of Biological Chemistry | 2002

The Androgen Receptor Interacts with Multiple Regions of the Large Subunit of General Transcription Factor TFIIF

James Reid; Ian Murray; Kate Watt; Russell Betney; Iain J. McEwan

The androgen receptor (AR) is a ligand-activated transcription factor that regulates genes important for male development and reproductive function. The main determinants for the transactivation function lie within the structurally distinct amino-terminal domain. Previously we identified an interaction between the AR-transactivation domain (amino acids 142–485) and the general transcription factor TFIIF (McEwan, I. J., and Gustafsson, J.-Å. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8485–8490). We have now mapped the binding sites for the AR-transactivation domain within the RAP74 subunit of TFIIF. Both the amino-terminal 136 amino acids and the carboxyl-terminal 155 amino acids of RAP74 interacted with the AR-transactivation domain and were able to rescue basal transcription after squelching by the AR polypeptide. Competition experiments demonstrated that the AR could interact with the holo-TFIIF protein and that the carboxyl terminus of RAP74 represented the principal receptor-binding site. Point mutations within AR-transactivation domain distinguished the binding sites for RAP74 and the p160 coactivator SRC-1a and identified a single copy of a six amino acid repeat motif as being important for RAP74 binding. These data indicate that the AR-transactivation domain can potentially make multiple protein-protein interactions with coactivators and components of the general transcriptional machinery in order to regulate target gene expression.


Journal of Molecular Endocrinology | 2008

Consequences of poly-glutamine repeat length for the conformation and folding of the androgen receptor amino-terminal domain.

Philippa Davies; Kate Watt; Sharon M. Kelly; Caroline Clark; Nicholas C. Price; Iain J. McEwan

Poly-amino acid repeats, especially long stretches of glutamine (Q), are common features of transcription factors and cell-signalling proteins and are prone to expansion, resulting in neurodegenerative diseases. The amino-terminal domain of the androgen receptor (AR-NTD) has a poly-Q repeat between 9 and 36 residues, which when it expands above 40 residues results in spinal bulbar muscular atrophy. We have used spectroscopy and biochemical analysis to investigate the structural consequences of an expanded repeat (Q45) or removal of the repeat (DeltaQ) on the folding of the AR-NTD. Circular dichroism spectroscopy revealed that in aqueous solution, the AR-NTD has a relatively limited amount of stable secondary structure. Expansion of the poly-Q repeat resulted in a modest increase in alpha-helix structure, while deletion of the repeat resulted in a small loss of alpha-helix structure. These effects were more pronounced in the presence of the structure-promoting solvent trifluoroethanol or the natural osmolyte trimethylamine N-oxide. Fluorescence spectroscopy showed that the microenvironments of four tryptophan residues were also altered after the deletion of the Q stretch. Other structural changes were observed for the AR-NTDQ45 polypeptide after limited proteolysis; in addition, this polypeptide not only showed enhanced binding of the hydrophobic probe 8-anilinonaphthalene-1-sulphonic acid but was more sensitive to urea-induced unfolding. Taken together, these findings support the view that the presence and length of the poly-Q repeat modulate the folding and structure of the AR-NTD.


Molecular Endocrinology | 2010

Conformation of the Mineralocorticoid Receptor N-terminal Domain: Evidence for Induced and Stable Structure

Katharina Fischer; Sharon M. Kelly; Kate Watt; Nicholas C. Price; Iain J. McEwan

The mineralocorticoid receptor (MR) binds the steroid hormones aldosterone and cortisol and has an important physiological role in the control of salt homeostasis. Regions of the protein important for gene regulation have been mapped to the amino-terminal domain (NTD) and termed activation function (AF)1a, AF1b, and middle domain (MD). In the present study, we used a combination of biophysical and biochemical techniques to investigate the folding and function of the MR-NTD transactivation functions. We demonstrate that MR-AF1a and MR-MD have relatively little stable secondary structure but have the propensity to form α-helical conformation. Induced folding of the MR-MD enhanced protein-protein binding with a number of coregulatory proteins, including the coactivator cAMP response element-binding protein-binding protein and the corepressors SMRT and RIP140. By contrast, the MR-AF1b domain appeared to have a more stable conformation consisting predominantly of β-secondary structure. Furthermore, MR-AF1b specifically interacted with the TATA-binding protein, via an LxxLL-like motif, in the absence of induced folding. Together, these data suggest that the MR-NTD contains a complex transactivation system made up of distinct structural and functional domains. The results are discussed in the context of the induced folding paradigm for steroid receptor NTDs.


Biochemical Society Transactions | 2006

Structural dynamics of the human androgen receptor: implications for prostate cancer and neurodegenerative disease

J. Duff; Philippa Davies; Kate Watt; Iain J. McEwan

The AR (androgen receptor) is a ligand-activated transcription factor that mediates the action of the steroids testosterone and dihydrotestosterone. Alterations in the AR gene result in a number of clinical disorders, including: androgen-insensitivity, which leads to disruption of male development; prostate cancer; and a neuromuscular degenerative condition termed spinal bulbar muscular atrophy or Kennedys disease. The AR gene is X-linked and the protein is coded for by eight exons, giving rise to a C-terminal LBD (ligand-binding domain; exons 4-8), linked by a hinge region (exon 4) to a Zn-finger DBD (DNA-binding domain; exons 2 and 3) and a large structurally distinct NTD (N-terminal domain; exon 1). Identification and characterization of mutations found in prostate cancer and Kennedys disease patients have revealed the importance of structural dynamics in the mechanisms of action of receptors. Recent results from our laboratory studying genetic changes in the LBD and the structurally flexible NTD will be discussed.


Sexual Development | 2014

Promoter-Dependent Activity on Androgen Receptor N-Terminal Domain Mutations in Androgen Insensitivity Syndrome

Rieko Tadokoro-Cuccaro; John Huw Davies; Nigel P. Mongan; Trevor Bunch; Rosalind S. Brown; Laura Audí; Kate Watt; Iain J. McEwan; Ieuan A. Hughes

Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.


Hormones and Cancer | 2014

Negative regulation of the androgen receptor gene through a primate specific androgen response element present in the 5' UTR

Colin W. Hay; Kate Watt; Irene Hunter; Derek N. Lavery; Alasdair MacKenzie; Iain J. McEwan

The androgen receptor (AR) is a widely expressed ligand-activated transcription factor which mediates androgen signalling by binding to androgen response elements (AREs) in normal tissue and prostate cancer (PCa). Within tumours, the amount of AR plays a crucial role in determining cell growth, resistance to therapy and progression to fatal castrate recurrent PCa in which prostate cells appear to become independent of androgenic steroids. Despite the pivotal role of the AR in male development and fertility and all stages of PCa development, the mechanisms governing AR expression remain poorly understood. In this work, we describe an active nonconsensus androgen response element (ARE) in the 5′ UTR of the human AR gene. The ARE represses transcription upon binding of activated AR, and this downregulation is relieved by disruption of the regulatory element through mutation. Also, multiple species comparison of the genomic region reveals that this ARE is specific to primates, leading to the conclusion that care must be exercised when elucidating the operation of the human AR in PCa based upon rodent promoter studies.


Molecular and Cellular Endocrinology | 2017

Tissue control of androgen action : The ups and downs of androgen receptor expression

Irene Hunter; Colin W. Hay; Bianca Esswein; Kate Watt; Iain J. McEwan

The hormone testosterone plays crucial roles during male development and puberty and throughout life, as an anabolic regulator of muscle and bone structure and function. The actions of testosterone are mediated, primarily, through the androgen receptor, a member of the nuclear receptor superfamily. The androgen receptor gene is located on the X-chromosome and receptor levels are tightly controlled both at the level of transcription of the gene and post-translationally at the protein level. Sp1 has emerged as the major driver of expression of the androgen receptor gene, while auto-regulation by androgens is associated with both positive and negative regulation in a possible cell-selective manner. Research into the networks of positive and negative regulators of the androgen receptor gene are vital in order to understand the temporal and spatial control of receptor levels and the consequences for healthy aging and disease. A clear understanding of the multiple transcription factors participating in regulation of the androgen receptor gene will likely aid in the development and application of hormone therapies to boast or curb receptor activity.

Collaboration


Dive into the Kate Watt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon M. Kelly

Institut national des sciences appliquées

View shared research outputs
Top Co-Authors

Avatar

James Reid

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajoeb Baridi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Anne Warren

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge