Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katelynn Perrault is active.

Publication


Featured researches published by Katelynn Perrault.


PLOS ONE | 2014

Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion

Shari L. Forbes; Katelynn Perrault

Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.


Journal of Separation Science | 2015

Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography

Katelynn Perrault; Pierre-Hugues Stefanuto; Barbara H. Stuart; T Rai; Jean-François Focant; Shari L. Forbes

Challenges in decomposition odour profiling have led to variation in the documented odour profile by different research groups worldwide. Background subtraction and use of controls are important considerations given the variation introduced by decomposition studies conducted in different geographical environments. The collection of volatile organic compounds (VOCs) from soil beneath decomposing remains is challenging due to the high levels of inherent soil VOCs, further confounded by the use of highly sensitive instrumentation. This study presents a method that provides suitable chromatographic resolution for profiling decomposition odour in soil by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry using appropriate controls and field blanks. Logarithmic transformation and t-testing of compounds permitted the generation of a compound list of decomposition VOCs in soil. Principal component analysis demonstrated the improved discrimination between experimental and control soil, verifying the value of the data handling method. Data handling procedures have not been well documented in this field and standardisation would thereby reduce misidentification of VOCs present in the surrounding environment as decomposition byproducts. Uniformity of data handling and instrumental procedures will reduce analytical variation, increasing confidence in the future when investigating the effect of taphonomic variables on the decomposition VOC profile.


Analytical Methods | 2015

Exploring new dimensions in cadaveric decomposition odour analysis

Pierre-Hugues Stefanuto; Katelynn Perrault; Rebecca Lloyd; Barbara H. Stuart; T Rai; Shari L. Forbes; Jean-François Focant

This study demonstrates the first documented use of comprehensive two-dimensional gas chromatography – high-resolution time-of-flight mass spectrometry (GC×GC-HRTOFMS) for volatile organic compound analysis in the forensic sciences. High-resolution mass spectral data provided higher confidence in analyte identification. GC×GC-HRTOFMS will be valuable for future studies of decomposition odour and other complex volatile matrices.


Analytical and Bioanalytical Chemistry | 2015

GC × GC–TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures

Pierre-Hugues Stefanuto; Katelynn Perrault; S Stadler; Romain Pesesse; Hélène N. LeBlanc; Shari L. Forbes; Jean-François Focant

In forensic thanato-chemistry, the understanding of the process of soft tissue decomposition is still limited. A better understanding of the decomposition process and the characterization of the associated volatile organic compounds (VOC) can help to improve the training of victim recovery (VR) canines, which are used to search for trapped victims in natural disasters or to locate corpses during criminal investigations. The complexity of matrices and the dynamic nature of this process require the use of comprehensive analytical methods for investigation. Moreover, the variability of the environment and between individuals creates additional difficulties in terms of normalization. The resolution of the complex mixture of VOCs emitted by a decaying corpse can be improved using comprehensive two-dimensional gas chromatography (GC × GC), compared to classical single-dimensional gas chromatography (1DGC). This study combines the analytical advantages of GC × GC coupled to time-of-flight mass spectrometry (TOFMS) with the data handling robustness of supervised multivariate statistics to investigate the VOC profile of human remains during early stages of decomposition. Various supervised multivariate approaches are compared to interpret the large data set. Moreover, early decomposition stages of pig carcasses (typically used as human surrogates in field studies) are also monitored to obtain a direct comparison of the two VOC profiles and estimate the robustness of this human decomposition analog model. In this research, we demonstrate that pig and human decomposition processes can be described by the same trends for the major compounds produced during the early stages of soft tissue decomposition.


PLOS ONE | 2014

Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-latitude (Cfb) Climate

Shari L. Forbes; Katelynn Perrault; Pierre-Hugues Stefanuto; Katie D. Nizio; Jean-François Focant

The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs.


Chromatographia | 2015

A Comparison of One‑Dimensional and Comprehensive Two‑Dimensional Gas Chromatography for Decomposition Odour Profiling Using Inter‑Year Replicate Field Trials

Katelynn Perrault; Katie D. Nizio; Shari L. Forbes

Decomposition odour analysis involves the chemical profiling of volatile organic compounds produced by decomposing remains. This is important for areas of forensic science that rely on the detection of decomposition odour such as insect attraction to carrion, positive alerts of cadaver dogs to decomposing remains, and the development of field instrumentation for search and recovery procedures. Traditionally decomposition odour analysis has been performed using gas chromatography–quadrupole mass spectrometry (GC–qMS); however, the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS) is rapidly becoming more prevalent. The objective of this study was to compare GC–qMS and GC×GC–TOFMS for decomposition odour profiling based on inter-year replicate field studies using decomposing porcine remains. The increased peak capacity, sensitivity and selectivity afforded by GC×GC–TOFMS allowed peak co-elutions, chromatographic artefacts, and dynamic range to be more easily addressed and managed. Furthermore, the software associated with GC×GC–TOFMS provided several additional benefits including improved peak alignment between samples and increased consistency of reported results, overall allowing for additional statistical tests to be applied following data processing. Future GC–qMS results could be improved by implementing some of these software-associated procedures, potentially reducing the magnitude of variation observed between GC–qMS and GC×GC–TOFMS studies. One-dimensional GC analysis may also benefit substantially from coupling with TOFMS detection to provide an indirect increase in peak capacity using deconvolution. However, the wealth of information gained by using GC×GC–TOFMS in decomposition odour profiling is undoubtedly an asset in this field of research.


Analytical Methods | 2015

Seasonal comparison of carrion volatiles in decomposition soil using comprehensive two-dimensional gas chromatography – time of flight mass spectrometry

Katelynn Perrault; T Rai; Barbara H. Stuart; Shari L. Forbes

Increased characterisation of decomposition odour has improved existing knowledge regarding the decomposition volatile organic compound (VOC) profile of carrion. Validation of this dynamic decomposition VOC profile is required in order to characterise the variables that affect their production. This study was performed to determine whether the decomposition VOC profile produced under field conditions differed between summer and winter in an Australian environment. Outdoor studies were conducted using pig carcasses as human analogues in order to assess seasonal variation in the decomposition process. Common decomposition VOCs were identified using comprehensive two-dimensional gas chromatography – time of flight mass spectrometry (GC×GC-TOFMS). Fewer compounds and reduced abundance of VOCs was observed during winter. Relationships between the levels of detected decomposition VOCs and weather variables were established to be stronger in winter. Weak relationships during summer suggested the potential that an underlying variable (e.g. microbial activity, insect activity) had a stronger relationship to the abundance of decomposition VOCs. The seasonal robustness of the decomposition VOC profile is important to fields relying on the presence of a decomposition odour, i.e. search and recovery of victims in mass disasters, homicides, and missing persons cases.


Journal of Breath Research | 2016

In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study.

Katie D. Nizio; Katelynn Perrault; A.N. Troobnikoff; Maiken Ueland; S Shoma; J R Iredell; P G Middleton; Shari L. Forbes

Chronic pulmonary infections are the principal cause of morbidity and mortality in individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the identification of the particular bacterial species responsible is an essential step in diagnosis and treatment. Current diagnostic procedures are time-consuming, and can also be expensive, invasive and unpleasant in the absence of spontaneously expectorated sputum. The development of a rapid, non-invasive methodology capable of diagnosing and monitoring early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled breath testing rely on the differentiation of bacteria based on their volatile metabolites. The objective of this proof-of-concept study was to investigate whether a range of CF-associated bacterial species (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri) could be differentiated based on their in vitro volatile metabolomic profiles. Headspace samples were collected using solid phase microextraction (SPME), analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess the multivariate structure of the data. Although it was not possible to effectively differentiate all six bacteria using this method, the results revealed that the presence of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. The particular pattern of VOCs was found to be dependent upon the bacterial growth phase (e.g. logarithmic versus stationary) and sample storage conditions (e.g. short-term versus long-term storage at  -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will benefit from the approaches presented in this study and further facilitate the production of diagnostic tools for the early detection of bacterial lung infections.


Heliyon | 2016

Establishing the volatile profile of pig carcasses as analogues for human decomposition during the early postmortem period

P. Armstrong; Katie D. Nizio; Katelynn Perrault; Shari L. Forbes

Following a mass disaster, it is important that victims are rapidly located as the chances of survival decrease greatly after approximately 48 h. Urban search and rescue (USAR) teams may use a range of tools to assist their efforts but detector dogs still remain one of the most effective search tools to locate victims of mass disasters. USAR teams can choose to deploy human scent dogs (trained to locate living victims) or human remains detection (HRD) dogs (trained to locate deceased victims). However, little is known about the variation between live human scent and postmortem human remains scent and the timeframe during which one type of scent transitions to the other. The aim of the current study was to measure the change in the scent profile of human decomposition analogues during the first 72 h postmortem by measuring the volatile organic compounds (VOCs) that comprise the odour. Three pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface and allowed to decompose under natural conditions. Decomposition odour was sampled frequently up to 75 h postmortem and analysed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 105 postmortem VOCs were identified during the early postmortem period. The VOC profile during the early postmortem period was highly dynamic, changing both hourly and daily. A transition period was observed after 43 h postmortem, where the VOC profile appeared to shift from a distinct antemortem odour to a more generalised postmortem odour. These findings are important in informing USAR teams and their use of detector dogs for disaster victim recovery.


Forensic Science Medicine and Pathology | 2014

Effect of age and storage conditions on the volatile organic compound profile of blood

Shari L. Forbes; LaTara Rust; Kate Trebilcock; Katelynn Perrault; Laura T. McGrath

Cadaver-detection dogs are used by the police to locate missing persons, victims of homicide, and human remains following mass disasters. Training is conducted using a variety of training aids including blood which can be hours, weeks or months old and stored under variable conditions. The aim of this study was to chemically profile human blood using solid-phase microextraction coupled with gas chromatography–mass spectrometry to determine how the volatile organic compound (VOC) profile changed over time and under variable storage conditions. The VOC profiles of fresh and degraded blood were analyzed as well as blood stored at room temperature, refrigerated, and frozen. Fresh and degraded blood samples produced distinctive VOC patterns with VOC profiles becoming more complex over time. Freezing the blood produced a complex VOC profile that was clearly discriminated from the VOC profile for blood stored at room temperature or in a refrigerator. This study highlights the importance of standardizing the age and storage conditions when using blood as a training aid to ensure cadaver-detection dogs are exposed to an accurate representation of the blood VOCs they may encounter at a scene.

Collaboration


Dive into the Katelynn Perrault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura McGregor

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Stadler

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge