Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kateri J. Spinelli is active.

Publication


Featured researches published by Kateri J. Spinelli.


The Journal of Neuroscience | 2010

The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice

Jung Bum Shin; Chantal M. Longo-Guess; Leona H. Gagnon; Katherine W. Saylor; Rachel A. Dumont; Kateri J. Spinelli; James M. Pagana; Phillip A. Wilmarth; Larry L. David; Peter G. Gillespie; Kenneth R. Johnson

The quantitative trait locus ahl8 is a key contributor to the early-onset, age-related hearing loss of DBA/2J mice. A nonsynonymous nucleotide substitution in the mouse fascin-2 gene (Fscn2) is responsible for this phenotype, confirmed by wild-type BAC transgene rescue of hearing loss in DBA/2J mice. In chickens and mice, FSCN2 protein is abundant in hair-cell stereocilia, the actin-rich structures comprising the mechanically sensitive hair bundle, and is concentrated toward stereocilia tips of the bundles longest stereocilia. FSCN2 expression increases when these stereocilia differentially elongate, suggesting that FSCN2 controls filament growth, stiffens exposed stereocilia, or both. Because ahl8 accelerates hearing loss only in the presence of mutant cadherin 23, a component of hair-cell tip links, mechanotransduction and actin crosslinking must be functionally interrelated.


Nature Neuroscience | 2013

Molecular architecture of the chick vestibular hair bundle

Jung Bum Shin; Jocelyn F. Krey; Ahmed Hassan; Zoltan Metlagel; Andrew N. Tauscher; James M. Pagana; Nicholas E. Sherman; Erin D. Jeffery; Kateri J. Spinelli; Hongyu Zhao; Phillip A. Wilmarth; Dongseok Choi; Larry L. David; Manfred Auer; Peter G. Barr-Gillespie

Hair bundles of the inner ear have a specialized structure and protein composition that underlies their sensitivity to mechanical stimulation. Using mass spectrometry, we identified and quantified >1,100 proteins, present from a few to 400,000 copies per stereocilium, from purified chick bundles; 336 of these were significantly enriched in bundles. Bundle proteins that we detected have been shown to regulate cytoskeleton structure and dynamics, energy metabolism, phospholipid synthesis and cell signaling. Three-dimensional imaging using electron tomography allowed us to count the number of actin-actin cross-linkers and actin-membrane connectors; these values compared well to those obtained from mass spectrometry. Network analysis revealed several hub proteins, including RDX (radixin) and SLC9A3R2 (NHERF2), which interact with many bundle proteins and may perform functions essential for bundle structure and function. The quantitative mass spectrometry of bundle proteins reported here establishes a framework for future characterization of dynamic processes that shape bundle structure and function.


Cell Reports | 2015

Progressive aggregation of alpha-synuclein and selective degeneration of lewy inclusion-bearing neurons in a mouse model of parkinsonism.

Valerie R. Osterberg; Kateri J. Spinelli; Leah J. Weston; Kelvin C. Luk; Randall L. Woltjer; Vivek K. Unni

Summary Aggregated alpha-synuclein inclusions are found where cell death occurs in several diseases, including Parkinson’s Disease, Dementia with Lewy Bodies and Multiple System Atrophy. However, the relationship between inclusion formation and an individual cell’s fate has been difficult to study with conventional techniques. We developed a system that allows for in vivo imaging of the same neurons over months. We show that intracerebral injection of preformed fibrils of recombinant alpha-synuclein can seed aggregation of transgenically-expressed and endogenous alpha-synuclein in neurons. Somatic inclusions undergo a stage-like maturation, with progressive compaction coinciding with decreased soluble somatic and nuclear alpha-synuclein. Mature inclusions bear the post-translational hallmarks of human Lewy pathology. Long-term imaging of inclusion-bearing neurons and neighboring neurons without inclusions demonstrates selective degeneration of inclusion-bearing cells. Our results indicate that inclusion formation is tightly correlated with cellular toxicity and that seeding may be a pathologically relevant mechanism of progressive neurodegeneration in many synucleinopathies.


PLOS Biology | 2013

Molecular Remodeling of Tip Links Underlies Mechanosensory Regeneration in Auditory Hair Cells

Artur A. Indzhykulian; Ruben Stepanyan; Anastasiia Nelina; Kateri J. Spinelli; Zubair M. Ahmed; Inna A. Belyantseva; Thomas B. Friedman; Peter G. Barr-Gillespie; Gregory I. Frolenkov

Backscatter scanning electron microscopy and conventional whole cell patch-clamp experiments reveal a two-step mechanism for the regeneration of tip links, the crucial element of mechanotransduction machinery in the hair cells of the inner ear.


The Journal of Neuroscience | 2014

Presynaptic Alpha-Synuclein Aggregation in a Mouse Model of Parkinson's Disease

Kateri J. Spinelli; Jonathan Taylor; Valerie R. Osterberg; Madeline J. Churchill; Eden Pollock; Cynthia Moore; Charles K. Meshul; Vivek K. Unni

Parkinsons disease and dementia with Lewy bodies are associated with abnormal neuronal aggregation of α-synuclein. However, the mechanisms of aggregation and their relationship to disease are poorly understood. We developed an in vivo multiphoton imaging paradigm to study α-synuclein aggregation in mouse cortex with subcellular resolution. We used a green fluorescent protein-tagged human α-synuclein mouse line that has moderate overexpression levels mimicking human disease. Fluorescence recovery after photobleaching (FRAP) of labeled protein demonstrated that somatic α-synuclein existed primarily in an unbound, soluble pool. In contrast, α-synuclein in presynaptic terminals was in at least three different pools: (1) as unbound, soluble protein; (2) bound to presynaptic vesicles; and (3) as microaggregates. Serial imaging of microaggregates over 1 week demonstrated a heterogeneous population with differing α-synuclein exchange rates. The microaggregate species were resistant to proteinase K, phosphorylated at serine-129, oxidized, and associated with a decrease in the presynaptic vesicle protein synapsin and glutamate immunogold labeling. Multiphoton FRAP provided the specific binding constants for α-synucleins binding to synaptic vesicles and its effective diffusion coefficient in the soma and axon, setting the stage for future studies targeting synuclein modifications and their effects. Our in vivo results suggest that, under moderate overexpression conditions, α-synuclein aggregates are selectively found in presynaptic terminals.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity

Kateri J. Spinelli; John Klimek; Phillip A. Wilmarth; Jung Bum Shin; Dongseok Choi; Larry L. David; Peter G. Gillespie

Measuring the abundance of many proteins over a broad dynamic range requires accurate quantitation. We show empirically that, in MS experiments, relative quantitation using summed dissociation-product ion-current intensities is accurate, albeit variable from protein to protein, and outperforms spectral counting. By applying intensities to quantify proteins in two complex but related tissues, chick auditory and vestibular sensory epithelia, we find that glycolytic enzymes are enriched threefold in auditory epithelia, whereas enzymes responsible for oxidative phosphorylation are increased at least fourfold in vestibular epithelia. This striking difference in relative use of the two ATP-production pathways likely reflects the isolation of the auditory epithelium from its blood supply, necessary to prevent heartbeat-induced mechanical disruptions. The global view of protein expression afforded by label-free quantitation with a wide dynamic range reveals molecular specialization at a tissue or cellular level.


PLOS ONE | 2015

Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice

Kateri J. Spinelli; Valerie R. Osterberg; Charles K. Meshul; Amala Soumyanath; Vivek K. Unni

The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease.


Molecular & Cellular Proteomics | 2014

Correlation of Actin Crosslinker and Capper Expression Levels with Stereocilia Growth Phases

Matthew R. Avenarius; Katherine W. Saylor; Megan R. Lundeberg; Phillip A. Wilmarth; Jung Bum Shin; Kateri J. Spinelli; James M. Pagana; Leonardo R. Andrade; Bechara Kachar; Dongseok Choi; Larry L. David; Peter G. Barr-Gillespie

During development of the chick cochlea, actin crosslinkers and barbed-end cappers presumably influence growth and remodeling of the actin paracrystal of hair cell stereocilia. We used mass spectrometry to identify and quantify major actin-associated proteins of the cochlear sensory epithelium from E14 to E21, when stereocilia widen and lengthen. Tight actin crosslinkers (i.e. fascins, plastins, and espin) are expressed dynamically during cochlear epithelium development between E7 and E21, with FSCN2 replacing FSCN1 and plastins remaining low in abundance. Capping protein, a barbed-end actin capper, is located at stereocilia tips; it is abundant during growth phase II, when stereocilia have ceased elongating and are increasing in diameter. Capping protein levels then decline during growth phase III, when stereocilia reinitiate barbed-end elongation. Although actin crosslinkers are readily detected by electron microscopy in developing chick cochlea stereocilia, quantitative mass spectrometry of stereocilia isolated from E21 chick cochlea indicated that tight crosslinkers are present there in stoichiometric ratios relative to actin that are much lower than their ratios for vestibular stereocilia. These results demonstrate the value of quantitation of global protein expression in chick cochlea during stereocilia development.


PLOS ONE | 2012

Monitoring Intracellular Calcium Ion Dynamics in Hair Cell Populations with Fluo-4 AM

Kateri J. Spinelli; Peter G. Gillespie

We optimized Fluo-4 AM loading of chicken cochlea to report hair-bundle Ca2+ signals in populations of hair cells. The bundle Ca2+ signal reported the physiological state of the bundle and cell; extruding cells had very high bundle Fluo-4 fluorescence, cells with intact bundles and tip links had intermediate fluorescence, and damaged cells with broken tip links had low fluorescence. Moreover, Fluo-4 fluorescence in the bundle correlated with Ca2+ entry through transduction channels; mechanically activating transduction channels increased the Fluo-4 signal, while breaking tip links with Ca2+ chelators or blocking Ca2+ entry through transduction channels each caused bundle and cell-body Fluo-4 fluorescence to decrease. These results show that when tip links break, bundle and soma Ca2+ decrease, which could serve to stimulate the hair cell’s tip-link regeneration process. Measurement of bundle Ca2+ with Fluo-4 AM is therefore a simple method for assessing mechanotransduction in hair cells and permits an increased understanding of the interplay of tip links, transduction channels, and Ca2+ signaling in the hair cell.


Nature Neuroscience | 2009

Bottoms up: transduction channels at tip link bases

Kateri J. Spinelli; Peter G. Gillespie

A study now demonstrates that the transduction channel responsible for converting sound to neural signals in the mammalian cochlea is excluded from the tallest row of stereocilia and is instead more likely in the bottom row.

Collaboration


Dive into the Kateri J. Spinelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge