Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katerina Ajami is active.

Publication


Featured researches published by Katerina Ajami.


FEBS Letters | 2008

Stromal cell-derived factors 1α and 1β, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8

Katerina Ajami; Melissa R. Pitman; Claire H. Wilson; Joohong Park; R. Ian Menz; Amanda E. Starr; Jennifer H. Cox; Catherine A. Abbott; Christopher M. Overall; Mark D. Gorrell

N‐terminal truncation of chemokines by proteases including dipeptidyl peptidase (DP) IV significantly alters their biological activity; generally ablating cognate G‐protein coupled receptor engagement and often generating potent receptor antagonists. DP8 is a recently recognised member of the prolyl oligopeptidase gene family that includes DPIV. Since DPIV is known to process chemokines we surveyed 27 chemokines for cleavage by DP8. We report DP8 cleavage of the N‐terminal two residues of IP10 (CXCL10), ITAC (CXCL11) and SDF‐1 (CXCL12). This has implications for DP8 substrate specificity. Chemokine cleavage and inactivation may occur in vivo upon cell lysis and release of DP8 or in the inactivation of internalized chemokine/receptor complexes.


Journal of Histochemistry and Cytochemistry | 2009

The In Vivo Expression of Dipeptidyl Peptidases 8 and 9

Denise M.T. Yu; Katerina Ajami; Margaret G. Gall; Joohong Park; C. Soon Lee; Kathryn A. Evans; Eileen A. McLaughlin; Melissa R. Pitman; Catherine A. Abbott; Geoffrey W. McCaughan; Mark D. Gorrell

The dipeptidyl peptidase IV (DPIV) enzyme family contains both potential and proven therapeutic targets. Recent reports indicate the presence of DP8 and DP9 in peripheral blood lymphocytes, testis, lung, and brain. For a more comprehensive understanding of DP8 and DP9 tissue and cellular expression, mRNA and enzyme activity were examined. Many organs from C57BL/6 wild-type and DPIV gene-knockout mice were examined; DP8/9 enzyme activity was detected in the immune system, brain, testis, muscle, and epithelia. In situ hybridization localized DP8 and DP9 mRNA to lymphocytes and epithelial cells in liver, gastrointestinal tract, lymph node, spleen, and lung. DP8 and DP9 mRNA was detected in baboon and mouse testis, and DP9 expression was elevated in human testicular cancers. DP8 and DP9 mRNA were ubiquitous in day 17 mouse embryo, with greatest expression in epithelium (skin and gastrointestinal tract) and brain. Thus, DP8 and DP9 are widely expressed enzymes. Their expression in lymphocytes and epithelia indicates potential for roles in the digestive and immune systems. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Journal of Hepatology | 2014

The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury

Candice Alexandra Grzelak; Luciano G. Martelotto; Nicholas David Sigglekow; Bramilla Patkunanathan; Katerina Ajami; S.R. Calabro; Benjamin J. Dwyer; Janina E.E. Tirnitz-Parker; D. Neil Watkins; Fiona J. Warner; Nicholas A. Shackel; Geoffrey W. McCaughan

BACKGROUND & AIMS In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood. This study aimed to characterise Hh pathway activation upon thioacetamide (TAA)-induced chronic liver injury in vivo by defining Hh-responsive cells, namely cells harbouring Pc and Pc-localised SMO. METHODS C57BL/6 mice (wild-type or Ptc1(+/-)) were TAA-treated. Liver injury and Hh ligand/pathway mRNA and protein expression were assessed in vivo. SMO/GLI manipulation and SMO-dependent/independent activation of GLI-mediated transcriptional response in Pc-positive (Pc(+)) cells were studied in vitro. RESULTS In vivo, Hh activation was progressively induced following TAA. At the epithelial-mesenchymal interface, injured hepatocytes produced Hh ligands. Progenitors, myofibroblasts, leukocytes and hepatocytes were GLI2(+). Pc(+) cells increased following TAA, but only EpCAM(+)/GLI2(+) progenitors were Pc(+)/SMO(+). In vitro, SMO knockdown/hGli3-R overexpression reduced proliferation/viability in Pc(+) progenitors, whilst increased proliferation occurred with hGli1 overexpression. HGF induced GLI transcriptional activity independently of Pc/SMO. Ptc1(+/-) mice exhibited increased progenitor, myofibroblast and fibrosis responses. CONCLUSIONS In chronic liver injury, Pc(+) progenitors receive Hh ligand signals and process it through Pc/SMO-dependent activation of GLI-mediated transcriptional response. Pc/SMO-independent GLI activation likely occurs in Pc(-)/GLI2(+) cells. Increased fibrosis in Hh gain-of-function mice likely occurs by primary progenitor expansion/proliferation and secondary fibrotic myofibroblast expansion, in close contact with progenitors.


Advances in Experimental Medicine and Biology | 2004

Dipeptidyl Peptidase IV Gene Family

Tong Chen; Katerina Ajami; Geoffrey W. McCaughan; Mark D. Gorrell; Catherine A. Abbott

We have identified three novel members of the DPIV gene family using database mining approaches. Recombinant DP8 shares a post-proline dipeptidyl aminopeptidase activity with the closely related enzymes DPIV and FAP. The similarities between DP8, DP9 and DPIV in tissue expression pattern suggest a potential role for DP8 and DP9 in liver disease, T cell activation and immune function. The role of the two novel enzymes DP8 and DP9 and the other non-enzyme member DPL2 in human disease will be the focus of further studies.


World Journal of Gastroenterology | 2013

Regulation of dipeptidyl peptidase 8 and 9 expression in activated lymphocytes and injured liver

Sumaiya Chowdhury; Yiqian Chen; Tsun-Wen Yao; Katerina Ajami; Xin M. Wang; Yury Popov; Detlef Schuppan; Patrick Bertolino; Geoffrey W. McCaughan; Denise Mt Yu; Mark D. Gorrell

AIM To investigate the expression of dipeptidyl peptidase (DPP) 8 and DPP9 in lymphocytes and various models of liver fibrosis. METHODS DPP8 and DPP9 expression were measured in mouse splenic CD4⁺ T-cells, CD8⁺ T-cells and B-cells (B220⁺), human lymphoma cell lines and mouse splenocytes stimulated with pokeweed mitogen (PWM) or lipopolysaccharide (LPS), and in dithiothreitol (DTT) and mitomycin-C treated Raji cells. DPP8 and DPP9 expression were measured in epidermal growth factor (EGF) treated Huh7 hepatoma cells, in fibrotic liver samples from mice treated with carbon tetrachloride (CCl₄) and from multidrug resistance gene 2 (Mdr2/Abcb4) gene knockout (gko) mice with biliary fibrosis, and in human end stage primary biliary cirrhosis (PBC). RESULTS All three lymphocyte subsets expressed DPP8 and DPP9 mRNA. DPP8 and DPP9 expression were upregulated in both PWM and LPS stimulated mouse splenocytes and in both Jurkat T- and Raji B-cell lines. DPP8 and DPP9 were downregulated in DTT treated and upregulated in mitomycin-C treated Raji cells. DPP9-transfected Raji cells exhibited more annexin V⁺ cells and associated apoptosis. DPP8 and DPP9 mRNA were upregulated in CCl₄ induced fibrotic livers but not in the lymphocytes isolated from such livers, while DPP9 was upregulated in EGF stimulated Huh7 cells. In contrast, intrahepatic DPP8 and DPP9 mRNA expression levels were low in the Mdr2 gko mouse and in human PBC compared to non-diseased livers. CONCLUSION These expression patterns point to biological roles for DPP8 and DPP9 in lymphocyte activation and apoptosis and in hepatocytes during liver disease pathogenesis.


Advances in Experimental Medicine and Biology | 2006

Structure and Function in Dipeptidyl Peptidase IV and Related Proteins

Mark D. Gorrell; Xin M. Wang; Joohong Park; Katerina Ajami; Denise Ming Tse Yu; Heather M. Knott; Devanshi Seth; Geoffrey W. McCaughan

Potential therapeutic applications of DPIV inhibitors have fuelled interest in understanding the biological roles of DPIV and its relatives. Such efforts are confounded by the ubiquitous expression of DPIV, inhibitor selectivity questions and the variety of identified substrates. DPIV is not essential, but is such a useful enzyme that all animal species express it. The enzyme activity’s ancient and primary function is probably nutritional, providing more complete proteolysis of food and recycled proteins. This function is unnecessary in well-fed humans. The development of selective inhibitors of proteolytic activity and identification of ligand binding activities in this gene family would lead to rapid advances in understanding the biology of the POP gene family.


American Journal of Pathology | 2011

Discoidin Domain Receptor 1: Isoform Expression and Potential Functions in Cirrhotic Human Liver

Sunmi Song; Nicholas A. Shackel; Xin M. Wang; Katerina Ajami; Geoffrey W. McCaughan; Mark D. Gorrell

Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and is activated by collagens. Transcriptional profiling of cirrhosis in human liver using a DNA array and quantitative PCR detected elevated mRNA expression of DDR1 compared with that in nondiseased liver. The present study characterized DDR1 expression in cirrhotic and nondiseased human liver and examined the cellular effects of DDR1 expression. mRNA expression of all five isoforms of DDR1 was detected in human liver, whereas DDR1a demonstrated differential expression in liver with hepatitis C virus and primary biliary cirrhosis compared with nondiseased liver. In addition, immunoblot analysis detected shed fragments of DDR1 more readily in cirrhotic liver than in nondiseased liver. Inasmuch as DDR1 is subject to protease-mediated cleavage after prolonged interaction with collagen, this differential expression may indicate more intense activation of DDR1 protein in cirrhotic compared with nondiseased liver. In situ hybridization and immunofluorescence localized intense DDR1 mRNA and protein expression to epithelial cells including hepatocytes at the portal-parenchymal interface and the luminal aspect of the biliary epithelium. Overexpression of DDR1a altered hepatocyte behavior including increased adhesion and less migration on extracelular matrix substrates. DDR1a regulated extracellular expression of matrix metalloproteinases 1 and 2. These data elucidate DDR1 function pertinent to cirrhosis and indicate the importance of epithelial cell-collagen interactions in chronic liver injury.


Advances in Experimental Medicine and Biology | 2006

DP8 and DP9 have extra-enzymatic roles in cell adhesion, migration and apoptosis

Denise M.T. Yu; Xin M. Wang; Katerina Ajami; Geoffrey W. McCaughan; Mark D. Gorrell

The biological significance of the new DPIV family members DP8 and DP9 is unknown. In order to obtain correlations between cell behaviors and peptidase expression levels, DP8 and DP9 overexpression in transfected cells was quantified by expressing green fluorescent protein fusion proteins. We found that, like DPIV and FAP, cells overexpressing DP8 and DP9 exhibit behavioral changes in the presence of ECM components. We demonstrated that these effects were independent of enzyme activity, and of the RGD motif that occurs in DP9. This study is the first indication of some similarities as well as differences between DP8, DP9, DPIV and FAP in their cell biological roles.


Advances in Experimental Medicine and Biology | 2006

Dipeptidyl Peptidase 8 Has Post-Proline Dipeptidyl Aminopeptidase and Prolyl Endopeptidase Activities

Joohong Park; Katerina Ajami; Denise M.T. Yu; Mark D. Gorrell

We report an expression and purification procedure to produce homogeneous, active human DP8 and DPIV. The most interesting discovery was that DP8 specifically has both prolyl dipeptidyl aminopeptidase and PEP activities. DPIV inhibitors varied in their selectivity against DP8 but all DP8 activities were inhibited by the irreversible DPIV inhibitor ValboroPro. These data indicate that DP8 is a multifunctional enzyme and that therapeutics based on DPIV inhibition should be counter-screened against DP8.


Biochimica et Biophysica Acta | 2004

Dipeptidyl peptidase 9 has two forms, a broad tissue distribution, cytoplasmic localization and DPIV-like peptidase activity

Katerina Ajami; Catherine A. Abbott; Geoffrey W. McCaughan; Mark D. Gorrell

Collaboration


Dive into the Katerina Ajami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin M. Wang

Centenary Institute of Cancer Medicine and Cell Biology

View shared research outputs
Top Co-Authors

Avatar

Nicholas A. Shackel

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge