Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katerina Leftheris is active.

Publication


Featured researches published by Katerina Leftheris.


Current Topics in Medicinal Chemistry | 2005

Small Molecule p38 Inhibitors: Novel Structural Features and Advances from 2002-2005

John Hynes; Katerina Leftheris

The discovery and development of selective, efficacious, and safe small molecule p38 mitogen-activated protein kinase inhibitors for the treatment of inflammatory diseases remains the focus of many pharmaceutical research programs. Advances in small molecule p38 inhibitor design in potency and oral efficacy have been accelerated with the large number of available inhibitor-enzyme x-ray structures. These advances have allowed for the discovery of diverse sets of inhibitors with the opportunity to map inhibitor interactions and design selective inhibitors. This review covers recent compound disclosures in the patent and published literature over the last three years. Many disclosures represent new chemotypes as well as creative modifications of known structures.


Bioorganic & Medicinal Chemistry Letters | 2008

Benzothiazole based inhibitors of p38α MAP kinase

Chunjian Liu; James Lin; Sidney Pitt; Rosemary Zhang; John S. Sack; Susan E. Kiefer; Kevin Kish; Arthur M. Doweyko; Hongjian Zhang; Punit Marathe; James M. Trzaskos; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

Rational design, synthesis, and SAR studies of a novel class of benzothiazole based inhibitors of p38alpha MAP kinase are described. The issue of metabolic instability associated with vicinal phenyl, benzo[d]thiazol-6-yl oxazoles/imidazoles was addressed by the replacement of the central oxazole or imidazole ring with an aminopyrazole system. The proposed binding mode of this new class of p38alpha inhibitors was confirmed by X-ray crystallographic studies of a representative inhibitor (6a) bound to the p38alpha enzyme.


Journal of Medicinal Chemistry | 2010

Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38α MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

Chunjian Liu; James Lin; Stephen T. Wrobleski; Shuqun Lin; John Hynes; Hong Wu; Alaric J. Dyckman; Tianle Li; John Wityak; Kathleen M. Gillooly; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Kim W. McIntyre; Luisa Salter-Cid; David J. Shuster; Hongjian Zhang; Punit Marathe; Arthur M. Doweyko; John S. Sack; Susan E. Kiefer; Kevin Kish; John A. Newitt; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

The discovery and characterization of 7k (BMS-582949), a highly selective p38α MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38α inhibitor. Unlike alkyl and other cycloalkyls, the sp(2) character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38α enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38α was confirmed by X-ray crystallographic analysis.


Bioorganic & Medicinal Chemistry Letters | 1994

Peptide based P21RAS farnesyl transferase inhibitors : systematic modification of the tetrapeptide CA1A2X motif

Katerina Leftheris; T. Kline; Sesha Natarajan; M.K. DeVirgilio; Y.H. Cho; J. Pluscec; Carolyn S. Ricca; Simon P. Robinson; Bernd R. Seizinger; Veeraswamy Manne; C.A. Meyers

Abstract A systematic study of CVFM, a CAAX-derived farnesyl transferase inhibitor, was undertaken to determine the structural elements important for intrinsic activity as well as substrate character. Results indicate a narrowly defined profile for nonsubstrate FT inhibition.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyrazolo-Pyrimidines: A Novel Heterocyclic Scaffold for Potent and Selective P38 Alpha Inhibitors.

Jagabandhu Das; Robert V. Moquin; Sidney Pitt; Rosemary Zhang; Ding Ren Shen; Kim W. McIntyre; Kathleen M. Gillooly; Arthur M. Doweyko; John S. Sack; Hongjian Zhang; Susan E. Kiefer; Kevin Kish; Murray McKinnon; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

The synthesis and structure-activity relationships (SAR) of p38 alpha MAP kinase inhibitors based on a pyrazolo-pyrimidine scaffold are described. These studies led to the identification of compound 2x as a potent and selective inhibitor of p38 alpha MAP kinase with excellent cellular potency toward the inhibition of TNFalpha production. Compound 2x was highly efficacious in vivo in inhibiting TNFalpha production in an acute murine model of TNFalpha production. X-ray co-crystallography of a pyrazolo-pyrimidine analog 2b bound to unphosphorylated p38 alpha is also disclosed.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and SAR of new pyrrolo[2,1-f][1,2,4]triazines as potent p38α MAP kinase inhibitors

Stephen T. Wrobleski; Shuqun Lin; John Hynes; Hong Wu; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Kathleen M. Gillooly; David J. Shuster; Kim W. McIntyre; Arthur M. Doweyko; Kevin Kish; Jeffrey Tredup; Gerald J. Duke; John S. Sack; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

A novel series of compounds based on the pyrrolo[2,1-f][1,2,4]triazine ring system have been identified as potent p38 alpha MAP kinase inhibitors. The synthesis, structure-activity relationships (SAR), and in vivo activity of selected analogs from this class of inhibitors are reported. Additional studies based on X-ray co-crystallography have revealed that one of the potent inhibitors from this series binds to the DFG-out conformation of the p38 alpha enzyme.


Bioorganic & Medicinal Chemistry Letters | 2002

C-3 Amido-Indole cannabinoid receptor modulators

John Hynes; Katerina Leftheris; Hong Wu; Chennagiri R. Pandit; Ping Chen; Derek J. Norris; Bang-Chi Chen; Rulin Zhao; Peter A. Kiener; Xiaorong Chen; Lori A. Turk; Vina Patil-Koota; Kathleen M. Gillooly; David J. Shuster; Kim W. McIntyre

C-3 Amido-indoles were found to selectively bind to the CB2 receptor. SAR studies led to optimized compounds with excellent in vivo potency against LPS induced TNF-alpha release in murine models of cytokine production.


Bioorganic & Medicinal Chemistry Letters | 2010

Utilization of a nitrogen–sulfur nonbonding interaction in the design of new 2-aminothiazol-5-yl-pyrimidines as p38α MAP kinase inhibitors

Shuqun Lin; Stephen T. Wrobleski; John Hynes; Sidney Pitt; Rosemary Zhang; Yi Fan; Arthur M. Doweyko; Kevin Kish; John S. Sack; Mary F. Malley; Susan E. Kiefer; John A. Newitt; Murray McKinnon; James M. Trzaskos; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

The design, synthesis, and structure-activity relationships (SAR) of a series of 2-aminothiazol-5-yl-pyrimidines as novel p38α MAP kinase inhibitors are described. These efforts led to the identification of 41 as a potent p38α inhibitor that utilizes a unique nitrogen-sulfur intramolecular nonbonding interaction to stabilize the conformation required for binding to the p38α active site. X-ray crystallographic studies that confirm the proposed binding mode of this class of inhibitors in p38 α and provide evidence for the proposed intramolecular nitrogen-sulfur interaction are discussed.


Bioorganic & Medicinal Chemistry Letters | 2002

Novel guanidine-based inhibitors of inosine monophosphate dehydrogenase.

Edwin J. Iwanowicz; Scott H. Watterson; Chunjian Liu; Henry H. Gu; Toomas Mitt; Katerina Leftheris; Joel C. Barrish; Catherine A. Fleener; Katherine A. Rouleau; N.Z. Sherbina; Diane Hollenbaugh

A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.


Bioorganic & Medicinal Chemistry Letters | 2014

Purine derivatives as potent Bruton's tyrosine kinase (BTK) inhibitors for autoimmune diseases.

Qing Shi; Andrew J. Tebben; Alaric J. Dyckman; Hedy Li; Chunjian Liu; James Lin; Steve Spergel; James R. Burke; Kim W. McIntyre; Gilbert C. Olini; Joann Strnad; Neha Surti; Jodi K. Muckelbauer; Chiehying Chang; Yongmi An; Lin Cheng; Qian Ruan; Katerina Leftheris; Percy H. Carter; Joseph A. Tino; George V. De Lucca

Investigation of various heterocyclic core isosteres of imidazopyrazines 1 & 2 yielded purine derivatives 3 & 8 as potent and selective BTK inhibitors. Subsequent SAR studies of the purine series led to the discovery of 20 as a leading compound. Compound 20 is very selective when screened against a panel of 400 kinases and is a potent inhibitor in cellular assays of human B cell function including B-Cell proliferation and CD86 cell surface expression and exhibited in vivo efficacy in a mouse PCA model. Its X-ray co-crystal structure with BTK shows that the high selectivity is gained from filling a BTK specific lipophilic pocket. However, physical and ADME properties leading to low oral exposure hindered further development.

Collaboration


Dive into the Katerina Leftheris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Hynes

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Wu

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar

Rajeev S. Bhide

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge