Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kateřina Schwarzerová is active.

Publication


Featured researches published by Kateřina Schwarzerová.


Nature | 2009

Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter

Jozef Mravec; Petr Skůpa; Aurélien Bailly; Klára Hoyerová; Pavel Křeček; Agnieszka Bielach; Jan Petrášek; Jing Zhang; Vassilena Gaykova; York-Dieter Stierhof; Petre I. Dobrev; Kateřina Schwarzerová; Jakub Rolčík; Daniela Seifertová; Christian Luschnig; Eva Benková; Eva Zažímalová; Markus Geisler; Jiří Friml

The plant signalling molecule auxin provides positional information in a variety of developmental processes by means of its differential distribution (gradients) within plant tissues. Thus, cellular auxin levels often determine the developmental output of auxin signalling. Conceptually, transmembrane transport and metabolic processes regulate the steady-state levels of auxin in any given cell. In particular, PIN auxin-efflux-carrier-mediated, directional transport between cells is crucial for generating auxin gradients. Here we show that Arabidopsis thaliana PIN5, an atypical member of the PIN gene family, encodes a functional auxin transporter that is required for auxin-mediated development. PIN5 does not have a direct role in cell-to-cell transport but regulates intracellular auxin homeostasis and metabolism. PIN5 localizes, unlike other characterized plasma membrane PIN proteins, to endoplasmic reticulum (ER), presumably mediating auxin flow from the cytosol to the lumen of the ER. The ER localization of other PIN5-like transporters (including the moss PIN) indicates that the diversification of PIN protein functions in mediating auxin homeostasis at the ER, and cell-to-cell auxin transport at the plasma membrane, represent an ancient event during the evolution of land plants.


Development | 2010

Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana.

Petra Žádníková; Jan Petrášek; Peter Marhavý; Vered Raz; Filip Vandenbussche; Zhaojun Ding; Kateřina Schwarzerová; Miyo Terao Morita; Masao Tasaka; Jan Hejátko; Dominique Van Der Straeten; Jiří Friml; Eva Benková

The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.


Plant Physiology | 2003

Do Phytotropins Inhibit Auxin Efflux by Impairing Vesicle Traffic

Jan Petrášek; Adriana Černá; Kateřina Schwarzerová; Miroslav Elčkner; David A. Morris; Eva Zažímalová

Phytotropins such as 1-N-naphthylphthalamic acid (NPA) strongly inhibit auxin efflux, but the mechanism of this inhibition remains unknown. Auxin efflux is also strongly decreased by the vesicle trafficking inhibitor brefeldin A (BFA). Using suspension-cultured interphase cells of the BY-2 tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line, we compared the effects of NPA and BFA on auxin accumulation and on the arrangement of the cytoskeleton and endoplasmic reticulum (ER). The inhibition of auxin efflux (stimulation of net accumulation) by both NPA and BFA occurred rapidly with no measurable lag. NPA had no observable effect on the arrangement of microtubules, actin filaments, or ER. Thus, its inhibitory effect on auxin efflux was not mediated by perturbation of the cytoskeletal system and ER. BFA, however, caused substantial alterations to the arrangement of actin filaments and ER, including a characteristic accumulation of actin in the perinuclear cytoplasm. Even at saturating concentrations, NPA inhibited net auxin efflux far more effectively than did BFA. Therefore, a proportion of the NPA-sensitive auxin efflux carriers may be protected from the action of BFA. Maximum inhibition of auxin efflux occurred at concentrations of NPA substantially below those previously reported to be necessary to perturb vesicle trafficking. We found no evidence to support recent suggestions that the action of auxin transport inhibitors is mediated by a general inhibition of vesicle-mediated protein traffic to the plasma membrane.


Current Opinion in Plant Biology | 2009

Actin and microtubule cytoskeleton interactions.

Jan Petrášek; Kateřina Schwarzerová

Plant cytoskeleton consists of two major networks of protein polymers, actin microfilaments (AFs) and microtubules (MTs). These networks perform numerous functions that are essential for cell division and for maintaining the integrity of cytoplasm required for intracellular transport and cell shape. Besides the more or less indirect cooperation between AFs and MTs, their direct interactions through specific physically interacting proteins has been well described in yeast, nematodes, insect and animal cells. Recently, promising candidates for corresponding homologous proteins have been identified in plants, although there is still lack of functional evidence for these interactions. Here we summarize recent advances in our knowledge about the candidate proteins or protein complexes that interact with both AFs and MTs and their role in fundamental cellular and developmental processes.


New Phytologist | 2010

Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells.

Přemysl Pejchar; Martin Potocký; Zuzana Novotná; Štěpánka Veselková; Daniela Kocourková; Olga Valentová; Kateřina Schwarzerová; Jan Martinec

• Aluminium ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. This study aimed to assess the impact of Al on the activity of phosphatidylcholine-hydrolysing phospholipase C (PC-PLC), a new member of the plant phospholipase family. • We labelled the tobacco cell line BY-2 and pollen tubes with a fluorescent derivative of phosphatidylcholine and assayed for patterns of fluorescently labelled products. Growth of pollen tubes was analysed. • We observed a significant decrease of labelled diacylglycerol (DAG) in cells treated with AlCl(3). Investigation of possible metabolic pathways that control DAG generation and consumption during the response to Al showed that DAG originated from the reaction catalysed by PC-PLC. The growth of pollen tubes was retarded in the presence of Al and this effect was accompanied by the decrease of labelled DAG similar to the case of the BY-2 cell line. The growth of pollen tubes arrested by Al was rescued by externally added DAG. • Our observation strongly supports the role of DAG generated by PC-PLC in the response of tobacco cells to Al.


BMC Plant Biology | 2010

The role of actin isoforms in somatic embryogenesis in Norway spruce

Kateřina Schwarzerová; Zuzana Vondráková; Lukáš Fischer; Petra Boříková; Erica Bellinvia; Kateřina Eliášová; Lenka Havelková; Jindřiška Fišerová; Martin Vágner; Zdeněk Opatrný

BackgroundSomatic embryogenesis in spruce is a process of high importance for biotechnology, yet it comprises of orchestrated series of events whose cellular and molecular details are not well understood. In this study, we examined the role of actin cytoskeleton during somatic embryogenesis in Norway spruce line AFO 541 by means of anti-actin drugs.ResultsApplication of low doses (50-100 nM) of latrunculin B (Lat B) during the maturation of somatic embryos predominantly killed suspensor cells while leaving the cells in meristematic centres alive, indicating differential sensitivity of actin in the two cell types. The treatment resulted in faster development of more advanced embryos into mature somatic embryos and elimination of insufficiently developed ones. In searching for the cause of the differential actin sensitivity of the two cell types, we analysed the composition of actin isoforms in the culture and isolated four spruce actin genes. Analysis of their expression during embryo maturation revealed that one actin isoform was expressed constitutively in both cell types, whereas three actin isoforms were expressed predominantly in suspensor cells and their expression declined during the maturation. The expression decline was greatly enhanced by Lat B treatment. Sequence analysis revealed amino-acid substitutions in the Lat B-binding site in one of the suspensor-specific actin isoforms, which may result in a different binding affinity for Lat B.ConclusionsWe show that manipulating actin in specific cell types in somatic embryos using Lat B treatment accelerated and even synchronized the development of somatic embryos and may be of practical use in biotechnology.


Protoplasma | 2006

Intranuclear accumulation of plant tubulin in response to low temperature.

Kateřina Schwarzerová; Jan Petrášek; K. C. S. Panigrahi; Sylva Zelenková; Zdeněk Opatrný; Peter Nick

Summary.Concurrently with cold-induced disintegration of microtubular structures in the cytoplasm, gradual tubulin accumulation was observed in a progressively growing proportion of interphase nuclei in tobacco BY-2 cells. This intranuclear tubulin disappeared upon rewarming. Simultaneously, new microtubules rapidly emerged from the nuclear periphery and reconstituted new cortical arrays, as was shown by immunofluorescence. A rapid exclusion of tubulin from the nucleus during rewarming was also observed in vivo in cells expressing GFP-tubulin. Nuclei were purified from cells that expressed GFP fused to an endoplasmic-reticulum retention signal (BY-2-mGFP5-ER), and green-fluorescent protein was used as a diagnostic marker to confirm that the nuclear fraction was not contaminated by nuclear-envelope proteins. These purified, GFP-free nuclei contained tubulin when isolated from cold-treated cells, whereas control nuclei were void of tubulin. Furthermore, highly conserved putative nuclear-export sequences were identified in tubulin sequences. These results led us to interpret the accumulation of tubulin in interphasic nuclei, as well as its rapid nuclear export, in the context of ancient intranuclear tubulin function during the cell cycle progression.


Frontiers in Plant Science | 2012

Multiple Actin Isotypes in Plants: Diverse Genes for Diverse Roles?

Kateřina Šlajcherová; Jindřiška Fišerová; Lukáš Fischer; Kateřina Schwarzerová

Plant actins are encoded by a gene family. Despite the crucial significance of the actin cytoskeleton for plant structure and function, the importance of individual actin isotypes and their specific roles in various plant tissues or even single cells is rather poorly understood. This review summarizes our current knowledge about the plant actin gene family including its evolution, gene and protein structure, and the expression profiles and regulation. Based on this background information, we review mutant and complementation analyses in Arabidopsis to draw an emerging picture of overlapping and specific roles of plant actin isotypes. Finally, we examine hypotheses explaining the mechanisms of isotype-specific functions.


Journal of Experimental Botany | 2008

A novel, cellulose synthesis inhibitory action of ancymidol impairs plant cell expansion

Jana Hofmannová; Kateřina Schwarzerová; Lenka Havelková; Petra Boříková; Jan Petrášek; Zdeněk Opatrný

The co-ordination of cell wall synthesis with plant cell expansion is an important topic of contemporary plant biology research. In studies of cell wall synthesis pathways, cellulose synthesis inhibitors are broadly used. It is demonstrated here that ancymidol, known as a plant growth retardant primarily affecting gibberellin biosynthesis, is also capable of inhibiting cellulose synthesis. Its ability to inhibit cellulose synthesis is not related to its anti-gibberellin action and possesses some unique features never previously observed when conventional cellulose synthesis inhibitors were used. It is suggested that ancymidol targets the cell wall synthesis pathway at a regulatory step where cell wall synthesis and cell expansion are coupled. The elucidation of the ancymidol target in plant cells could potentially contribute to our understanding of cell wall synthesis and cell expansion control.


Cell Biology International | 2008

Aluminum ions inhibit phospholipase D in a microtubule-dependent manner

Přemysl Pejchar; Roman Pleskot; Kateřina Schwarzerová; Jan Martinec; Olga Valentová; Zuzana Novotná

Aluminum is a highly cytotoxic metal to plants, but the molecular base and the primary target of Al toxicity are still unknown. The most important physiological consequence of Al toxicity is a cessation of root growth and changes in root morphology suggesting a role of the root cytoskeleton as a target structure. The important role of phospholipid degrading enzyme phospholipase D in regulation of cytoskeleton remodelling in both animal and plant organisms is now evident. Both the phospholipid pathway and the cytoskeleton are influenced by Al3+, but their relationship with Al stress remains to be explored. Therefore, we tested the possibility that Al stress could be sensed by plants through microtubules in close interaction with phospholipases. We have shown that Al3+ reduced the formation of phosphatidic acid in vivo, inhibited activity of phosphatidylinositol‐4,5‐bisphosphate‐dependent phospholipase D in vitro and that the phosphatidic acid production is modified by microtubule dynamics.

Collaboration


Dive into the Kateřina Schwarzerová's collaboration.

Top Co-Authors

Avatar

Jan Petrášek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Zdeněk Opatrný

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Lenka Havelková

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Daniela Seifertová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Eva Zažímalová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Martinec

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukáš Fischer

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Stanislav Vosolsobě

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Sylva Zelenková

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge