Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katerina Semendeferi is active.

Publication


Featured researches published by Katerina Semendeferi.


American Journal of Physical Anthropology | 2001

Prefrontal cortex in humans and apes: A comparative study of area 10

Katerina Semendeferi; Este Armstrong; Axel Schleicher; Karl Zilles; Gary W. Van Hoesen

Area 10 is one of the cortical areas of the frontal lobe involved in higher cognitive functions such as the undertaking of initiatives and the planning of future actions. It is known to form the frontal pole of the macaque and human brain, but its presence and organization in the great and lesser apes remain unclear. It is here documented that area 10 also forms the frontal pole of chimpanzee, bonobo, orangutan, and gibbon brains. Imaging techniques and stereological tools are used to characterize this area across species and provide preliminary estimates of its absolute and relative size. Area 10 has similar cytoarchitectonic features in the hominoid brain, but aspects of its organization vary slightly across species, including the relative width of its cortical layers and the space available for connections. The cortex forming the frontal pole of the gorilla appears highly specialized, while area 10 in the gibbon occupies only the orbital sector of the frontal pole. Area 10 in the human brain is larger relative to the rest of the brain than it is in the apes, and its supragranular layers have more space available for connections with other higher-order association areas. This suggests that the neural substrates supporting cognitive functions associated with this part of the cortex enlarged and became specialized during hominid evolution.


JAMA | 2011

Neuron Number and Size in Prefrontal Cortex of Children With Autism

Eric Courchesne; Peter R. Mouton; Michael E. Calhoun; Katerina Semendeferi; Clelia Ahrens-Barbeau; Melodie J. Hallet; Cynthia Carter Barnes; Karen Pierce

CONTEXT Autism often involves early brain overgrowth, including the prefrontal cortex (PFC). Although prefrontal abnormality has been theorized to underlie some autistic symptoms, the cellular defects that cause abnormal overgrowth remain unknown. OBJECTIVE To investigate whether early brain overgrowth in children with autism involves excess neuron numbers in the PFC. DESIGN, SETTING, AND CASES: Postmortem prefrontal tissue from 7 autistic and 6 control male children aged 2 to 16 years was examined by expert anatomists who were blinded to diagnostic status. Number and size of neurons were quantified using stereological methods within the dorsolateral (DL-PFC) and mesial (M-PFC) subdivisions of the PFC. Cases were from the eastern and southeastern United States and died between 2000 and 2006. MAIN OUTCOME MEASURES Mean neuron number and size in the DL-PFC and M-PFC were compared between autistic and control postmortem cases. Correlations of neuron number with deviation in brain weight from normative values for age were also performed. RESULTS Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children. CONCLUSION In this small preliminary study, brain overgrowth in males with autism involved an abnormal excess number of neurons in the PFC.


Nature Neuroscience | 2002

Humans and great apes share a large frontal cortex

Katerina Semendeferi; A. Lu; Natalie M. Schenker; Hanna Damasio

Some of the outstanding cognitive capabilities of humans are commonly attributed to a disproportionate enlargement of the human frontal lobe during evolution. This claim is based primarily on comparisons between the brains of humans and of other primates, to the exclusion of most great apes. We compared the relative size of the frontal cortices in living specimens of several primate species, including all extant hominoids, using magnetic resonance imaging. Human frontal cortices were not disproportionately large in comparison to those of the great apes. We suggest that the special cognitive abilities attributed to a frontal advantage may be due to differences in individual cortical areas and to a richer interconnectivity, none of which required an increase in the overall relative size of the frontal lobe during hominid evolution.


Biological Psychiatry | 2010

Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism

John T. Morgan; Gursharan Chana; Carlos A. Pardo; Cristian L. Achim; Katerina Semendeferi; Jody Buckwalter; Eric Courchesne; Ian Everall

BACKGROUND In the neurodevelopmental disorder autism, several neuroimmune abnormalities have been reported. However, it is unknown whether microglial somal volume or density are altered in the cortex and whether any alteration is associated with age or other potential covariates. METHODS Microglia in sections from the dorsolateral prefrontal cortex of nonmacrencephalic male cases with autism (n = 13) and control cases (n = 9) were visualized via ionized calcium binding adapter molecule 1 immunohistochemistry. In addition to a neuropathological assessment, microglial cell density was stereologically estimated via optical fractionator and average somal volume was quantified via isotropic nucleator. RESULTS Microglia appeared markedly activated in 5 of 13 cases with autism, including 2 of 3 under age 6, and marginally activated in an additional 4 of 13 cases. Morphological alterations included somal enlargement, process retraction and thickening, and extension of filopodia from processes. Average microglial somal volume was significantly increased in white matter (p = .013), with a trend in gray matter (p = .098). Microglial cell density was increased in gray matter (p = .002). Seizure history did not influence any activation measure. CONCLUSIONS The activation profile described represents a neuropathological alteration in a sizeable fraction of cases with autism. Given its early presence, microglial activation may play a central role in the pathogenesis of autism in a substantial proportion of patients. Alternatively, activation may represent a response of the innate neuroimmune system to synaptic, neuronal, or neuronal network disturbances, or reflect genetic and/or environmental abnormalities impacting multiple cellular populations.


Progress in Brain Research | 2012

Human prefrontal cortex: evolution, development, and pathology.

Kate Teffer; Katerina Semendeferi

The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.


Cerebral Cortex | 2011

Spatial Organization of Neurons in the Frontal Pole Sets Humans Apart from Great Apes

Katerina Semendeferi; Kate Teffer; Dan P. Buxhoeveden; Min S. Park; Sebastian Bludau; Katrin Amunts; Katie Travis; Joseph A. Buckwalter

Few morphological differences have been identified so far that distinguish the human brain from the brains of our closest relatives, the apes. Comparative analyses of the spatial organization of cortical neurons, including minicolumns, can aid our understanding of the functionally relevant aspects of microcircuitry. We measured horizontal spacing distance and gray-level ratio in layer III of 4 regions of human and ape cortex in all 6 living hominoid species: frontal pole (Brodmann area [BA] 10), and primary motor (BA 4), primary somatosensory (BA 3), and primary visual cortex (BA 17). Our results identified significant differences between humans and apes in the frontal pole (BA 10). Within the human brain, there were also significant differences between the frontal pole and 2 of the 3 regions studied (BA 3 and BA 17). Differences between BA 10 and BA 4 were present but did not reach significance. These findings in combination with earlier findings on BA 44 and BA 45 suggest that human brain evolution was likely characterized by an increase in the number and width of minicolumns and the space available for interconnectivity between neurons in the frontal lobe, especially the prefrontal cortex.


American Journal of Physical Anthropology | 1998

Limbic frontal cortex in hominoids: A comparative study of area 13

Katerina Semendeferi; Este Armstrong; Axel Schleicher; Karl Zilles; Gary W. Van Hoesen

The limbic frontal cortex forms part of the neural substrate responsible for emotional reactions to social stimuli. Area 13 is one of the cortical areas long known to be part of the posterior orbitofrontal cortex in several monkey species, such as the macaque. Its presence nevertheless in the human brain has been unclear, and the cortex of the frontal lobe of the great and lesser apes remains largely unknown. In this study area 13 was identified in human, chimpanzee, bonobo, gorilla, orangutan, and gibbon brains, and cortical maps were generated on the basis of its cytoarchitecture. Imaging techniques were used to characterize and quantify the microstructural organization of the area, and stereological tools were applied for estimates of the volume of area 13 in all species. Area 13 is conservative in its structure, and features such as size of cortical layers, density of neurons, and space available for connections are similar across hominoids with only subtle differences present. In contrast to the homogeneity found in its organization, variation is present in the relative size of this cortical area (as a percentage of total brain volume). The human and the bonobo include a complex orbitofrontal cortex and a relatively smaller area 13. On the contrary the orangutan stands out by having a shorter orbitofrontal region and a more expanded area 13. Differences in the organization and size of individual cortical areas involved in emotional reactions and social behavior can be related to behavioral specializations of each hominoid and to the evolution of emotions in hominids.


Archive | 2012

Human prefrontal cortex

Kate Teffer; Katerina Semendeferi

The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.


Neuropathology and Applied Neurobiology | 2006

Reduced minicolumns in the frontal cortex of patients with autism

Daniel P. Buxhoeveden; Katerina Semendeferi; Joseph A. Buckwalter; N. Schenker; R. Switzer; Eric Courchesne

Cell minicolumns were shown to be narrower in frontal regions in brains of autistic patients compared with controls. This was not found in primary visual cortex. Within the frontal cortex, dorsal and orbital regions displayed the greatest differences while the mesial region showed the least change. We also found that minicolumns in the brain of a 3‐year‐old autistic child were indistinguishable from those of the autistic adult in two of three frontal regions, in contrast to the control brains. This may have been due to the small size of the columns in the adult autistic brain rather than to an accelerated development. The presence of narrower minicolumns supports the theory that there is an abnormal increase in the number of ontogenetic column units produced in some regions of the autistic brain during corticoneurogenesis.


Brain Research | 2012

Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism

John T. Morgan; Gursharan Chana; Ian Abramson; Katerina Semendeferi; Eric Courchesne; Ian Everall

Microglial activation and alterations in neuron number have been reported in autism. However, it is unknown whether microglial activation in the disorder includes a neuron-directed microglial response that might reflect neuronal dysfunction, or instead indicates a non-directed, pro-activation brain environment. To address this question, we examined microglial and neuronal organization in the dorsolateral prefrontal cortex, a region of pronounced early brain overgrowth in autism, via spatial pattern analysis of 13 male postmortem autism subjects and 9 controls. We report that microglia are more frequently present near neurons in the autism cases at a distance interval of 25 μm, as well as 75 and 100 μm. Many interactions are observed between near-distance microglia and neurons that appear to involve encirclement of the neurons by microglial processes. Analysis of a young subject subgroup preliminarily suggests that this alteration may be present from an early age in autism. We additionally observed that neuron-neuron clustering, although normal in cases with autism as a whole, increases with advancing age in autism, suggesting a gradual loss of normal neuronal organization in the disorder. Microglia-microglia organization is normal in autism at all ages, indicating that aberrantly close microglia-neuron association in the disorder is not a result of altered microglial distribution. Our findings confirm that at least some microglial activation in the dorsolateral prefrontal cortex in autism is associated with a neuron-specific reaction, and suggest that neuronal organization may degrade later in life in the disorder.

Collaboration


Dive into the Katerina Semendeferi's collaboration.

Top Co-Authors

Avatar

Patrick R. Hof

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chet C. Sherwood

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Kari L. Hanson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Bellugi

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Teffer

University of California

View shared research outputs
Top Co-Authors

Avatar

Karl Zilles

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge