Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kateřina Svobodová is active.

Publication


Featured researches published by Kateřina Svobodová.


Chemosphere | 2009

Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi

Tomáš Cajthaml; Zdena Křesinová; Kateřina Svobodová; Monika Möder

Endocrine-disrupting compounds (EDCs) represent a large group of substances of natural and anthropogenic origin. They are widely distributed in the environment and can pose serious risks to aquatic organisms and to public health. In this study, 4-n-nonylphenol, technical 4-nonylphenol, bisphenol A, 17alpha-ethinylestradiol, and triclosan were biodegraded by eight ligninolytic fungal strains (Irpex lacteus 617/93, Bjerkandera adusta 606/93, Phanerochaete chrysosporium ME 446, Phanerochaete magnoliae CCBAS 134/I, Pleurotus ostreatus 3004 CCBAS 278, Trametes versicolor 167/93, Pycnoporus cinnabarinus CCBAS 595, Dichomitus squalens CCBAS 750). The results show that under the used conditions the fungi were able to degrade the EDCs within 14d of cultivation with exception of B. adusta and P. chrysosporium in the case of triclosane and bisphenol A, respectively. I. lacteus and P. ostreatus were found to be most efficient EDC degraders with their degradation efficiency exceeding 90% or 80%, respectively, in 7d. Both fungi degraded technical 4-nonylphenol, bisphenol-A, and 17alpha-ethinylestradiol below the detection limit within first 3d of cultivation. In general, estrogenic activities assayed with a recombinant yeast test decreased with advanced degradation. However, in case of I. lacteus, P. ostreatus, and P. chrysosporium the yeast assay showed a residual estrogenic activity (28-85% of initial) in 17alpha-ethinylestradiol cultures. Estrogenic activity in B. adusta cultures temporally increased during degradation of technical 4-nonylphenol, suggesting a production of endocrine-active intermediates. Attention was paid also to the effects of EDCs on the ligninolytic enzyme activities of the different fungi strains to evaluate their possible stimulation or suppression of activities during the biodegradation processes.


Folia Microbiologica | 2008

Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus

Leonardo Casieri; Giovanna Cristina Varese; A. Anastasi; Valeria Prigione; Kateřina Svobodová; V. Filippelo Marchisio; Čeněk Novotný

Trametes pubescens and Pleurotus ostreatus, immobilized on polyurethane foam cubes in bioreactors, were used to decolorize three industrial and model dyes at concentrations of 200, 1000 and 2000 ppm. Five sequential cycles were run for each dye and fungus. The activity of laccase, Mn-dependent and independent peroxidases, lignin peroxidase, and aryl-alcohol oxidase were daily monitored during the cycles and the toxicity of media containing 1000 and 2000 ppm of each dye was assessed by the Lemna minor (duckweed) ecotoxicity test. Both fungi were able to efficiently decolorize all dyes even at the highest concentration, and the duckweed test showed a significant reduction (p ≤ 0.05) of the toxicity after the decolorization treatment. T. pubescens enzyme activities varied greatly and no clear correlation between decolorization and enzyme activity was observed, while P. ostreatus showed constantly a high laccase activity during decolorization cycles. T. pubescens showed better decolorization and detoxication capability (compared to the better known P. ostreatus). As wide differences in enzyme activity of the individual strains were observed, the strong decolorization obtained with the two fungi suggested that different dye decolorization mechanisms might be involved.


Environmental Pollution | 2009

Microbial transformation of synthetic estrogen 17α-ethinylestradiol.

Tomáš Cajthaml; Zdena Kresinova; Kateřina Svobodová; Karel Sigler; Tomas Rezanka

Natural estrogens such as estrone, 17beta-estradiol, estriol, and the particularly recalcitrant synthetic estrogen 17alpha-ethinylestradiol used as oral contraceptive, accumulate in the environment and may give rise to health problems. The processes participating in their removal from soil, wastewater, water-sediments, groundwater-aquifer material, and wastewater or sewage treatment plant effluents may involve the action of bacterial and microbial consortia, and in some cases fungi and algae. This review discusses the different efficiencies of bacterial degradation of 17alpha-ethinylestradiol under aerobic and anaerobic conditions, the role of sulfate-, nitrate-, and iron-reducing conditions in anaerobic degradation, and the role of sorption. The participation of autotrophic ammonia oxidizing bacteria and heterotrophic bacteria in cometabolic degradation of estrogens, the estrogen-degrading action of ligninolytic fungi and their extracellular enzymes (lignin peroxidase, manganese-dependent peroxidase, versatile peroxidase, laccase), and of algae are discussed in detail.


Folia Microbiologica | 2009

Irpex lacteus, a white-rot fungus with biotechnological potential — review

Čeněk Novotný; Tomáš Cajthaml; Kateřina Svobodová; Martin Šušla; Václav Šašek

White-rot fungi that are efficient lignin degraders responsible for its turnover in nature have appeared twice in the center of biotechnological research — first, when the lignin degradation process started being systematically investigated and major enzyme activities and mechanisms involved were described, and second, when the huge remediation potential of these organisms was established. Originally, Phanerochaete chrysosporium became a model organism, characterized by a secondary metabolism regulatory pattern triggered by nutrient (mostly nitrogen) limitation. Last decade brought evidence of more varied regulatory patterns in white-rot fungi when ligninolytic enzymes were also abundantly synthesized under conditions of nitrogen sufficiency. Gradually, research was focused on other species, among them Irpex lacteus showing a remarkable pollutant toxicity resistance and biodegradation efficiency. Systematic research has built up knowledge of biochemistry and biotechnological applicability of this fungus, stressing the need to critically summarize and estimate these scattered data. The review attempts to evaluate the information on I. lacteus focusing on various enzyme activities and bioremediation of organopollutants in water and soil environments, with the aim of mediating this knowledge to a broader microbiological audience.


Applied Microbiology and Biotechnology | 2012

Interspecific interactions in mixed microbial cultures in a biodegradation perspective

Hana Mikesková; Čeněk Novotný; Kateřina Svobodová

In recent works, microbial consortia consisting of various bacteria and fungi exhibited a biodegradation performance superior to single microbial strains. A highly efficient biodegradation of synthetic dyes, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other organic pollutants can be achieved by mixed microbial cultures that combine degradative enzyme activities inherent to individual consortium members. This review summarizes biodegradation results obtained with defined microbial cocultures and real microbial consortia. The necessity of using a proper strategy for the microbial consortium development and optimization was clearly demonstrated. Molecular genetic and proteomic techniques have revolutionized the study of microbial communities, and techniques such as the denaturing gradient gel electrophoresis, rRNA sequencing, and metaproteomics have been used to identify consortium members and to study microbial population dynamics. These analyses could help to further enhance and optimize the natural activities of mixed microbial cultures.


Bioresource Technology | 2011

Potential of combined fungal and bacterial treatment for color removal in textile wastewater

Čeněk Novotný; Kateřina Svobodová; Oldřich Benada; Olga Kofroňová; Andreas Heissenberger; W. Fuchs

Low efficiency of dye removal by mixed bacterial communities and high rates of dye decolorization by white-rot fungi suggest a combination of both processes to be an option of treatment of textile wastewaters containing dyes and high concentrations of organics. Bacteria were able to remove mono-azo dye but not other chemically different dyes whereas decolorization rates using Irpex lacteus mostly exceeded 90% within less than one week irrespective of dye structure. Decolorization rates for industrial textile wastewaters containing 2-3 different dyes by fungal trickling filters (FTF) attained 91%, 86%, 35% within 5-12 d. Sequential two-step application of FTF and bacterial reactors resulted in efficient decolorization in 1st step (various single dyes, 94-99% within 5 d; wastewater I, 90% within 7 d) and TOC reduction of 95-97% in the two steps. Large potential of combined use of white-rot fungi and traditional bacterial treatment systems for bioremediation of textile wastewaters was demonstrated.


Bioresource Technology | 2010

In vivo and in vitro polycyclic aromatic hydrocarbons degradation by lentinus (panus) tigrinus CBS 577.79.

Stefano Covino; Kateřina Svobodová; Zdena Kresinova; Maurizio Petruccioli; Federico Federici; Alessandro D'Annibale; Monika Čvančarová; Tomáš Cajthaml

The ability of stationary and shaken Lentinus tigrinus CBS 577.79 liquid cultures to degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) in N-rich (i.e., malt extract glucose, MEG) and in N-limited (low-N Kirks medium, LNKM) media was investigated. Best results were obtained in shaken cultures where PAHs were degraded by 91% and 97% in MEG and LNKM, respectively; in stationary cultures, on the contrary, the degradation was never higher than 50%. Laccase activity was predominant on MEG while Mn-peroxidase (MnP) was preferentially produced in LNKM. The identification of degradation products showed the presence of several PAH derivatives, such as quinones, dicarboxylated and ring fission derivatives, presumably derived from the action of lignin-modifying enzymes. The presence of some degradation products (e.g., hydroxylated derivatives of anthrone and phenanthrene 9,10-dihydrodiol) suggested the possible involvement of cytochrome P-450-epoxide hydrolase system, the active form of which was found in 7-day-old cultures on MEG. In vitro experiments showed that the MnP from L. tigrinus had wider PAH substrate range and higher oxidation ability than the laccase produced by the same strain.


Journal of Hazardous Materials | 2010

An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices.

Stefano Covino; Monika Čvančarová; Milan Muzikar; Kateřina Svobodová; Alessandro D'Annibale; Maurizio Petruccioli; Federico Federici; Zdena Kresinova; Tomáš Cajthaml

This study comparatively investigated the PAH degradation ability of Lentinus tigrinus and Irpex lacteus in a historically polluted soil and creosote-impregnated shavings. With this regard, the effect of type of inoculum carrier (i.e., wheat straw, corn cobs and commercial pellets) and contaminant bioavailability was thoroughly determined. Although degradation performances of L. tigrinus were not significantly affected by the type of the support, they were invariably better than those of I. lacteus on both the polluted soil and the creosote-impregnated shavings. Although degradation efficiencies of all fungal microcosms were highly and significantly correlated with bioavailability, certain PAHs, such as chrysene and benzo[a]pyrene, were removed by L. tigrinus from the polluted soil at amounts that exceeded about 2.3-fold their respective bioavailabilities. Degradation of PAHs was negatively correlated with their organic carbon sorption coefficients (K(oc)) and hydrophobicity (logP). The strength of linear association with the latter parameter, however, was not affected by the type of contaminated matrix in L. tigrinus-based microcosms while it was significantly larger in the historically polluted soil than in the creosote-impregnated shavings in I. lacteus ones.


Applied Microbiology and Biotechnology | 2010

New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment.

Kateřina Svobodová; Tomáš Cajthaml

Identification of chemicals with endocrine-disrupting activities in the past two decades has led to the need for sensitive assays for detection and monitoring of these activities in the environment. In vitro reporter gene assays represent a relatively fast and easy-to-perform method for detection of compounds that are able to bind to hormonal receptors and stimulate or silence their transactivation activity, thus interfering with the hormone signaling pathways. This paper reviews upgrades on reporter gene assays performed during the last decade. The utilization of new reporter genes (luciferase and green fluorescent protein coding genes) significantly improved the sensitivity of the tests and made them faster. Reporter gene assays now represent a high-throughput system for screening chemicals for hormonal activity. Finally, modification of test set-ups for testing anti-hormonal activities also enabled measurements of endocrine-disrupting activities in complex environmental samples such as sediments and wastewater treatment plant effluents.


Environmental Science & Technology | 2012

Mechanistic Study of 17α-Ethinylestradiol Biodegradation by Pleurotus ostreatus: Tracking of Extracelullar and Intracelullar Degradation Mechanisms

Zdena Křesinová; Monika Moeder; Martin Ezechiáš; Kateřina Svobodová; Tomáš Cajthaml

The white rot fungus Pleurotus ostreatus is able to completely remove the synthetic hormone 17α-ethinylestradiol (EE2, 200 μg in 20 mL) from a liquid complex or mineral medium in 3 or 14 days, respectively. Its efficiency has also been documented in the removal of estrogenic activity that correlated with the EE2 degradation. A set of in vitro experiments using various cellular and enzyme fractions has been performed and the results showed that EE2 was degraded by isolated laccase (about 90% within 24 h). The degradation was also tested with concentrated extracellular liquid where degradation reached 50% mainly due to the laccase activity; however, after a supplementation with H₂O₂ and Mn²⁺, residual manganese-dependent peroxidase activities (40 times lower than Lac) raised the degradation to 100%. Moreover, the intracellular fraction and also laccase-like activity associated with fungal mycelium were found to be efficient in the degradation too. Isolated microsomal proteins appeared to also be involved in the process. The degradation was completely suppressed in the presence of cytochrome P-450 inhibitors, piperonylbutoxide and carbon monoxide, indicating a role of this monooxygenase in the degradation process. Attention was also paid to monitoring of changes in the estrogenic activity during these particular in vitro experiments when mainly degradations related to ligninolytic enzymes were found to decrease the estrogenic activity with EE2 removal proportionally. Several novel metabolites of EE2 were detected using different chromatographic method with mass spectrometric techniques (LC-MS, GC-MS) including also [¹³C]-labeled substrates. The results document the involvement of various different simultaneous mechanisms in the EE2 degradation by P. ostreatus by both the ligninolytic system and the eukaryotic machinery of cytochromes P-450.

Collaboration


Dive into the Kateřina Svobodová's collaboration.

Top Co-Authors

Avatar

Čeněk Novotný

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš Cajthaml

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Zdena Křesinová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Martin Šušla

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Monika Čvančarová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Denisa Petráčková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Pavla Erbanová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge