Katerina V. Gurova
Roswell Park Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katerina V. Gurova.
Oncogene | 2002
Sarah S. Bacus; Deborah A. Altomare; Ljuba Lyass; Dot Chin; Michael Farrell; Katerina V. Gurova; Andrei V. Gudkov; Joseph R. Testa
Amplification or overexpression of the HER-2/neu gene in breast cancers is associated with aggressive behavior and resistance to therapeutic regimens. The molecular mechanisms that contribute to therapeutic resistance/survival of HER-2/neu-overexpressing tumor cells have not been well defined. To determine if phosphatidylinositol 3-kinase/AKT signaling contributes to cell survival in HER-2/neu-positive breast cancers, we performed immunohistochemical analyses to evaluate expression of HER-2/neu and AKT in a series of 52 breast carcinomas. Elevated expression of HER-2/neu was found to correlate with overexpression of AKT2 protein and activation of AKT kinase. HER-2/neu-overexpressing breast cancer cell lines were resistant to apoptosis induced by UV treatment and hypoxia, which was suppressed in the presence of the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin, indicating a link between AKT activation and stress resistance in HER-2/neu-overexpressing cells. These observations suggest that AKT signaling augments resistance to stress-induced apoptosis in breast cancer cells overexpressing HER-2/neu.
Genes & Cancer | 2011
Andrei V. Gudkov; Katerina V. Gurova; Elena A. Komarova
Numerous observations indicate a strong link between chronic inflammation and cancer. This link is supported by substantial experimental evidence indicating mutual negative regulation of NF-κB, the major regulator of inflammation, and p53, the major tumor suppressor. This antagonistic relationship reflects the opposite principles of the physiological responses driven by these transcription factors, which act as sensors and mediators of intrinsic and extrinsic cell stresses, respectively. Constitutive activation of NF-κB, the underlying cause of chronic inflammation, is a common acquired characteristic of tumors. A variety of experimental methods have been used to demonstrate that constitutive activation of NF-κB reduces the tumor suppressor activity of p53, thereby creating permissive conditions for dominant oncogene-mediated transformation. Loss of p53 activity is also a characteristic of the majority of tumors and results in unleashed inflammatory responses due to loss of p53-mediated NF-κB suppression. On the other hand, in natural or pharmacological situations of enforced p53 activation, NF-κB activity, inflammation, and immune responses are reduced, resulting in different pathologies. It is likely that the chronic inflammation that is commonly acquired in various tissues of older mammals leads to general suppression of p53 function, which would explain the increased risk of cancer observed in aging animals and humans. Although the molecular mechanisms underlying reciprocal negative regulation of p53 and NF-κB remain to be deciphered, this phenomenon has important implications for pharmacological prevention of cancer and aging and for new approaches to control inflammation.
Oncogene | 2009
C Guo; Alexander V. Gasparian; Z Zhuang; D A Bosykh; A A Komar; Andrei V. Gudkov; Katerina V. Gurova
Acquisition of a transformed phenotype involves deregulation of several signal transduction pathways contributing to unconstrained cell growth. Understanding the interplay of different cancer-related signaling pathways is important for development of efficacious multitargeted anticancer drugs. The small molecule 9-aminoacridine (9AA) and its derivative, the antimalaria drug quinacrine, have selective toxicity for tumor cells and can simultaneously suppress nuclear factor-κB (NF-κB) and activate p53 signaling. To investigate the mechanism underlying these drug activities, we used a combination of two-dimensional protein separation by gel electrophoresis and mass spectrometry to identify proteins whose expression is altered in tumor cells by 9AA treatment. We found that 9AA treatment results in selective downregulation of a specific catalytic subunit of the phosphoinositide 3-kinase (PI3K) family, p110γ. Further exploration of this observation demonstrated that the mechanism of action of 9AA involves inhibition of the prosurvival AKT/mammalian target of rapamycin (mTOR) pathway that lies downstream of PI3K. p110γ translation appears to be regulated by mTOR and feeds back to further modulate mTOR and AKT, thereby impacting the p53 and NF-κB pathways as well. These results reveal functional interplay among the PI3K/AKT/mTOR, p53 and NF-κB pathways that are frequently deregulated in cancer and suggest that their simultaneous targeting by a single small molecule such as 9AA could result in efficacious and selective killing of transformed cells.
Science Translational Medicine | 2011
Alexander V. Gasparian; Catherine Burkhart; Andrei Purmal; Leonid Brodsky; Mahadeb Pal; Madhi Saranadasa; Dmitry Bosykh; Mairead Commane; Olga A. Guryanova; Srabani Pal; Sergey Sviridov; Igor Koman; Jean M. Veith; Anton A. Komar; Andrei V. Gudkov; Katerina V. Gurova
The quinacrine-related compounds curaxins target multiple procancer pathways through FACT complex. Curaxins: Cancer Therapy Grounded in FACT Targeted cancer therapies offer the possibility of personalized therapies with reduced toxicity, but their impact is limited by the development of drug resistance and subsequent proliferation of tumor cells that are refractory to further treatment. Combination therapies might help overcome the resistance problem because a tumor cell is less likely to be simultaneously resistant to multiple drugs that act by distinct mechanisms, but the potential for negative drug interactions and increased toxicities causes concern in the clinic. Here, Gasparian et al. kill two birds with one stone: They find that the quinacrine-related DNA-intercalating compounds curaxins can target multiple procancer pathways with minimal toxicity. Curaxins are small molecules that simultaneously activate p53 and inhibit nuclear factor κB (NF-κB), two pathways that are altered in diverse tumor types. These drugs show strong anticancer activity in mice without detectable genotoxicity. Here, Gasparian et al. determine the mechanism behind curaxins’ success. These molecules trap the FACT (facilitates chromatin transcription) complex within chromatin, which results in p53 phosphorylation and inhibition of NF-κB–dependent transcription. This study not only supports a role for curaxins as potentially safe agents that target multiple pathways involved in diverse cancer types but also promotes FACT as a prime target for future bimodal therapies. Although it remains to be seen whether these data are reproducible in humans, defining curaxins’ mechanism of action is a major step in translating these promising small molecules to the clinic. Effective eradication of cancer requires treatment directed against multiple targets. The p53 and nuclear factor κB (NF-κB) pathways are dysregulated in nearly all tumors, making them attractive targets for therapeutic activation and inhibition, respectively. We have isolated and structurally optimized small molecules, curaxins, that simultaneously activate p53 and inhibit NF-κB without causing detectable genotoxicity. Curaxins demonstrated anticancer activity against all tested human tumor xenografts grown in mice. We report here that the effects of curaxins on p53 and NF-κB, as well as their toxicity to cancer cells, result from “chromatin trapping” of the FACT (facilitates chromatin transcription) complex. This FACT inaccessibility leads to phosphorylation of the p53 Ser392 by casein kinase 2 and inhibition of NF-κB–dependent transcription, which requires FACT activity at the elongation stage. These results identify FACT as a prospective anticancer target enabling simultaneous modulation of several pathways frequently dysregulated in cancer without induction of DNA damage. Curaxins have the potential to be developed into effective and safe anticancer drugs.
Cancer Research | 2009
Catherine Burkhart; Fujiko Watt; Jayne Murray; Marina Pajic; Anatoly Prokvolit; Chengyuan Xue; Claudia Flemming; Janice Smith; Andrei Purmal; Nadezhda Isachenko; Pavel G. Komarov; Katerina V. Gurova; Alan C. Sartorelli; Glenn M. Marshall; Murray D. Norris; Andrei V. Gudkov; Michelle Haber
The multidrug resistance-associated protein 1 (MRP1) has been closely linked to poor treatment response in several cancers, most notably neuroblastoma. Homozygous deletion of the MRP1 gene in primary murine neuroblastoma tumors resulted in increased sensitivity to MRP1 substrate drugs (vincristine, etoposide, and doxorubicin) compared with tumors containing both copies of wild-type MRP1, indicating that MRP1 plays a significant role in the drug resistance in this tumor type and defining this multidrug transporter as a target for pharmacologic suppression. A cell-based readout system was created to functionally determine intracellular accumulation of MRP1 substrates using a p53-responsive reporter as an indicator of drug-induced DNA damage. Screening of small-molecule libraries in this readout system revealed pyrazolopyrimidines as a prominent structural class of potent MRP1 inhibitors. Reversan, the lead compound of this class, increased the efficacy of both vincristine and etoposide in murine models of neuroblastoma (syngeneic and human xenografts). As opposed to the majority of inhibitors of multidrug transporters, Reversan was not toxic by itself nor did it increase the toxicity of chemotherapeutic drug exposure in mice. Therefore, Reversan represents a new class of nontoxic MRP1 inhibitor, which may be clinically useful for the treatment of neuroblastoma and other MRP1-overexpressing drug-refractory tumors by increasing their sensitivity to conventional chemotherapy.
Journal of Biological Chemistry | 1999
Marija Zeremski; Jason Hill; Serena S. S. Kwek; Irina A. Grigorian; Katerina V. Gurova; Igor Garkavtsev; Luda Diatchenko; Eugene V. Koonin; Andrei V. Gudkov
The human ING1 gene encodes nuclear protein p33 ING1 , previously shown to cooperate with p53 in cell growth control (Garkavtsev, I., Grigorian, I. A., Ossovskaya, V. S., Chernov, M. V., Chumakov, P. M., and Gudkov, A. V. (1998) Nature 391, 295–298). p33 ING1 belongs to a small family of proteins from human, mouse, and yeast of approximately the same size that show significant similarity to one another within the C-terminal PHD finger domain and also contain an additional N-terminal region with subtle but reliably detectable sequence conservation. Mouse ing1 is transcribed from three differently regulated promoters localized within a 4-kilobase pair region of genomic DNA. The resulting transcripts share a long common region encoded by a common exon and differ in their 5′-exon sequences. Two transcripts are translated into the same protein of 185 amino acids, the mouse equivalent of the human p33 ING1 , while the third transcript encodes a longer protein that has 94 additional N-terminal amino acids. Overexpression of the longer protein interferes with the accumulation of p53 protein and activation of p53-responsive promoters after DNA damage. Between the two products ofing1, only the longer one forms a complex with p53 detectable by immunoprecipitation. These results indicate that a single gene, ing1, encodes both p53-suppressing and p53-activating proteins that are regulated by alternative promoters.
Cell Cycle | 2009
Nickolay Neznanov; Anton V. Gorbachev; Lubov Neznanova; Andrei P. Komarov; Katerina V. Gurova; Alexander V. Gasparian; Amiya K. Banerjee; Alexandru Almasan; Robert L. Fairchild; Andrei V. Gudkov
The number of physical conditions and chemical agents induce accumulation of misfolded proteins creating proteotoxic stress. This leads to activation of adaptive pro-survival pathway, known as heat shock response (HSR), resulting in expression of additional chaperones. Several cancer treatment approaches, such as proteasome inhibitor Bortezomib and hsp90 inhibitor geldanamycin, involve activation of proteotoxic stress. Low efficacy of these therapies is likely due to the protective effects of HSR induced in treated cells, making this pathway an attractive target for pharmacological suppression. We found that the anti-malaria drugs quinacrine (QC) and emetine prevented HSR in cancer cells, as judged by induction of hsp70 expression. As opposed to emetine, which inhibited general translation, QC did not affect protein synthesis, but rather suppressed inducible HSF1-dependent transcription of the hsp70 gene in a relatively selective manner. The treatment of tumor cells in vitro with a combination of non-toxic concentrations of QC and proteotoxic stress inducers resulted in rapid induction of apoptosis. The effect was similar if QC was substituted by siRNA against hsp70, suggesting that the HSR inhibitory activity of QC was responsible for cell sensitization to proteotoxic stress inducers. QC was also found to enhance the antitumor efficacy of proteotoxic stress inducers in vivo: combinatorial treatment with 17-DMAG+QC resulted in suppression of tumor growth in two mouse syngeneic models. These results reveal that QC is an inhibitor of HSF1-mediated HSR. As such, this compound has significant clinical potential as an adjuvant in therapeutic strategies aimed at exploiting the cytotoxic potential of proteotoxic stress.
European Journal of Immunology | 2007
Anton V. Gorbachev; Alexander V. Gasparian; Katerina V. Gurova; Andrei V. Gudkov; Robert L. Fairchild
Quinacrine (QC) is an anti‐inflammatory drug that has been used for the treatment of malaria and rheumatoid diseases. The mechanism(s) underlying the anti‐inflammatory activity of QC remains poorly understood. We recently reported the QC‐mediated inhibition of the NF‐κB pathway using an in vitro model. To test this potential mechanism in vivo, we used the contact hypersensitivity response (CHS) to chemical allergen sensitization and challenge in mice as a model of skin inflammation. The results indicated that QC treatment inhibited NF‐κB activation in the skin during allergen sensitization. This inhibition was reflected by decreased mRNA expression and protein production of the NF‐κB‐dependent cytokines TNF‐α and IL‐1β and the chemokine CCL21 in the skin. The decreases in these cytokines resulted in reduced migration of allergen‐presenting dendritic cells from the skin into skin‐draining lymph nodes and markedly decreased activation of effector CD8+ T cells for the CHS response to allergen challenge (inhibitory concentration 50% or IC50 was 55 mg/kg). These findings reveal a previously unrecognized mechanism of QC‐mediated inhibition of inflammation.
Science Translational Medicine | 2015
Daniel Carter; Jayne Murray; Belamy B. Cheung; Laura Gamble; Jessica Koach; Joanna Tsang; Selina Sutton; Heyam Kalla; Sarah Syed; Andrew J. Gifford; Natalia Issaeva; Asel Biktasova; Bernard Atmadibrata; Yuting Sun; Nicolas Sokolowski; Dora Ling; Patrick Y. Kim; Hannah Webber; Ashleigh Clark; Michelle Ruhle; Bing Liu; André Oberthuer; Matthias Fischer; Jennifer A. Byrne; Federica Saletta; Le M. Thwe; Andrei Purmal; Gary Haderski; Catherine Burkhart; Frank Speleman
Histone chaperone FACT acts in a positive feedback loop with MYCN and is a therapeutic target in neuroblastoma. Uncovering the FACTs in neuroblastoma Neuroblastoma is a common pediatric cancer of the nervous system. It is often difficult to treat, and tumors with amplifications of the MYC oncogene are particularly aggressive. Carter et al. have identified a histone chaperone called FACT as a mediator of MYC signaling in neuroblastoma and demonstrated its role in a feedback loop that allows tumor cells to maintain a high expression of both MYC and FACT. The authors then used curaxins, which are drugs that inhibit FACT, to break the vicious cycle. They demonstrated that curaxins work in synergy with standard genotoxic chemotherapy to kill cancer cells and treat neuroblastoma in mouse models. Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small-molecule curaxin compound CBL0137 markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with standard chemotherapy by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells and suggesting a treatment strategy for MYCN-driven neuroblastoma.
Journal of Virology | 2008
Kyung-Jin Jung; Arindam Dasgupta; Keven Huang; Soo-Jin Jeong; Cynthia A. Pise-Masison; Katerina V. Gurova; John N. Brady
ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of the aggressive and fatal disease adult T-cell leukemia. Previous studies have demonstrated that the HTLV-1-encoded Tax protein inhibits the function of tumor suppressor p53 through a Tax-induced NF-κB pathway. Given these attributes, we were interested in the activity of small-molecule inhibitor 9-aminoacridine (9AA), an anticancer drug that targets two important stress response pathways, NF-κB and p53. In the present study, we have examined the effects of 9AA on HTLV-1-transformed cells. Treatment of HTLV-1-transformed cells with 9AA resulted in a dramatic decrease in cell viability. Consistent with these results, we observed an increase in the percentage of cells in sub-G1 and an increase in the number of cells positive by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay following treatment of HTLV-1-transformed cells with 9AA. In each assay, HTLV-1-transformed cells C8166, Hut102, and MT2 were more sensitive to treatment with 9AA than control CEM and peripheral blood mononuclear cells. Analyzing p53 function, we demonstrate that treatment of HTLV-1-transformed cells with 9AA resulted in an increase in p53 protein and activation of p53 transcription activity. Of significance, 9AA-induced cell death could be blocked by introduction of a p53 small interfering RNA, linking p53 activity and cell death. These results suggest that Tax-repressed p53 function in HTLV-1-transformed cells is “druggable” and can be restored by treatment with 9AA. The fact that 9AA induces p53 and inhibits NF-κB suggests a promising strategy for the treatment of HTLV-1-transformed cells.