Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kateryna Bazaka is active.

Publication


Featured researches published by Kateryna Bazaka.


Acta Biomaterialia | 2011

Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment

Kateryna Bazaka; Mohan V. Jacob; Russell J. Crawford; Elena P. Ivanova

Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.


Chemical Reviews | 2016

Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons

Kateryna Bazaka; Mohan V. Jacob; K. Ostrikov

Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.


RSC Advances | 2015

Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification

Kateryna Bazaka; Mohan V. Jacob; Wojciech Chrzanowski; K. Ostrikov

Strategies that confine antibacterial and/or antifouling property to the surface of the implant, by modifying the surface chemistry and morphology or by encapsulating the material in an antibiotic-loaded coating, are most promising as they do not alter bulk integrity of the material. Among them, plasma-assisted modification and catechol chemistry stand out for their ability to modify a wide range of substrates. By controlling processing parameters, plasma environment can be used for surface nano structuring, chemical activation, and deposition of biologically active and passive coatings. Catechol chemistry can be used for material-independent, highly-controlled surface immobilisation of active molecules and fabrication of biodegradable drug-loaded hydrogel coatings. In this article, we comprehensively review the role plasma-assisted processing and catechol chemistry can play in combating bacterial colonisation on medically relevant coatings, and how these strategies can be coupled with the use of natural antimicrobial agents to produce synthetic antibiotic-free antibacterial surfaces.


Nano Letters | 2015

Catalyst-Free Plasma Enhanced Growth of Graphene from Sustainable Sources

Mohan V. Jacob; R. S. Rawat; Bo Ouyang; Kateryna Bazaka; D. Sakthi Kumar; Dai Taguchi; Mitsumasa Iwamoto; Ram Neupane; Oomman K. Varghese

Details of a fast and sustainable bottom-up process to grow large area high quality graphene films without the aid of any catalyst are reported in this paper. We used Melaleuca alternifolia, a volatile natural extract from tea tree plant as the precursor. The as-fabricated graphene films yielded a stable contact angle of 135°, indicating their potential application in very high hydrophobic coatings. The electronic devices formed by sandwiching pentacene between graphene and aluminum films demonstrated memristive behavior, and hence, these graphene films could find use in nonvolatile memory devices also.


Biomacromolecules | 2010

Plasma-Enhanced Synthesis of Bioactive Polymeric Coatings from Monoterpene Alcohols: A Combined Experimental and Theoretical Study

Kateryna Bazaka; Mohan V. Jacob; Vi Khanh Truong; Feng Wang; Wickrama Arachchilage Anoja Pushpamali; James Wang; Amanda V. Ellis; Christopher C. Berndt; Russell J. Crawford; Elena P. Ivanova

This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.


Advanced Materials | 2018

Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Self‐Assembly at the Nanoscale

I. Levchenko; Kateryna Bazaka; Michael Keidar; Shuyan Xu; Jinghua Fang

Increasingly intricate in their composition and structural organization, hierarchical multicomponent metamaterials with nonlinear spatially reconfigurable functionalities challenge the intrinsic constraints of natural materials, revealing tremendous potential for the advancement of biochemistry, nanophotonics, and medicine. Recent breakthroughs in high-resolution nanofabrication utilizing ultranarrow, precisely controlled ion or laser beams have enabled assembly of architectures of unprecedented structural and functional complexity, yet costly, time- and energy-consuming high-resolution sequential techniques do not operate effectively at industry-required scale. Inspired by the fictional Baron Munchausens fruitless attempt to pull himself up, it is demonstrated that metamaterials can undergo intrinsically driven self-assembly, metaphorically pulling themselves up into existence. These internal drivers hold a key to unlocking the potential of metamaterials and mapping a new direction for the large-area, cost-efficient self-organized fabrication of practical devices. A systematic exploration of these efforts is presently missing, and the driving forces governing the intrinsically driven self-assembly are yet to be fully understood. Here, recent progress in the self-organized formation and self-propelled growth of complex hierarchical multicomponent metamaterials is reviewed, with emphasis on key principles, salient features, and potential limitations of this family of approaches. Special stress is placed on self-assembly driven by plasma, current in liquid, ultrasonic, and similar highly energetic effects, which enable self-directed formation of metamaterials with unique properties and structures.


Scientific Reports | 2016

Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth.

Renwu Zhou; Rusen Zhou; Xianhui Zhang; Jinxing Zhuang; Size Yang; Kateryna Bazaka; K. Ostrikov

Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.


Materials | 2017

Review on the Antimicrobial Properties of Carbon Nanostructures

Ahmed Al-Jumaili; Surjith Alancherry; Kateryna Bazaka; Mohan V. Jacob

Swift developments in nanotechnology have prominently encouraged innovative discoveries across many fields. Carbon-based nanomaterials have emerged as promising platforms for a broad range of applications due to their unique mechanical, electronic, and biological properties. Carbon nanostructures (CNSs) such as fullerene, carbon nanotubes (CNTs), graphene and diamond-like carbon (DLC) have been demonstrated to have potent broad-spectrum antibacterial activities toward pathogens. In order to ensure the safe and effective integration of these structures as antibacterial agents into biomaterials, the specific mechanisms that govern the antibacterial activity of CNSs need to be understood, yet it is challenging to decouple individual and synergistic contributions of physical, chemical and electrical effects of CNSs on cells. In this article, recent progress in this area is reviewed, with a focus on the interaction between different families of carbon nanostructures and microorganisms to evaluate their bactericidal performance.


Applied physics reviews | 2018

Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

I. Levchenko; Kateryna Bazaka; Yongjie Ding; Yevgeny Raitses; Stéphane Mazouffre; Torsten Henning; Peter J. Klar; Shunjiro Shinohara; Jochen Schein; L. Garrigues; Min Kwan Kim; Dan R. Lev; Francesco Taccogna; Roderick Boswell; Christine Charles; Hiroyuki Koizumi; Yan Shen; Carsten Scharlemann; Michael Keidar; Shuyan Xu

Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small thrusters including Hall thrusters, ion engines, helicon, and vacuum arc devices are presented, and trends and perspectives are outlined.


Scientific Reports | 2017

Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria

Karthika Prasad; G.S. Lekshmi; Kola Ostrikov; Vanessa Lussini; James P. Blinco; Mandhakini Mohandas; Krasimir Vasilev; Steven E. Bottle; Kateryna Bazaka; K. Ostrikov

Reduced graphene oxide (rGO) is a promising antibacterial material, the efficacy of which can be further enhanced by the addition of silver nanoparticles (nAg). In this study, the mechanisms of antibacterial activity of rGO–nAg nanocomposite against several important human pathogenic multi-drug resistant bacteria, namely Gram-positive coccal Staphylococcus aureus and Gram-negative rod-shaped Escherichia coli and Proteus mirabilis are investigated. At the same concentration (100 µg/ml), rGO–nAg nanocomposite was significantly more effective against all three pathogens than either rGO or nAg. The nanocomposite was equally active against P. mirabilis and S. aureus as systemic antibiotic nitrofurantoin, and significantly more effective against E. coli. Importantly, the inhibition was much faster in the case of rGO–nAg nanocomposite compared to nitrofurantoin, attributed to the synergistic effects of rGO–nAg mediated contact killing and oxidative stress. This study may provide new insights for the better understanding of antibacterial actions of rGO–nAg nanocomposite and for the better designing of graphene-based antibiotics or other biomedical applications.

Collaboration


Dive into the Kateryna Bazaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Ostrikov

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Elena P. Ivanova

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

I. Levchenko

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell J. Crawford

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Keidar

George Washington University

View shared research outputs
Top Co-Authors

Avatar

S. Xu

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge