Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharina Bell is active.

Publication


Featured researches published by Katharina Bell.


Progress in Retinal and Eye Research | 2013

Does autoimmunity play a part in the pathogenesis of glaucoma

Katharina Bell; Oliver W. Gramlich; Nadine von Thun und Hohenstein-Blaul; Sabine Beck; Sebastian Funke; Corina Wilding; Norbert Pfeiffer; Franz H. Grus

Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Several risk factors have been described, e.g. an elevated intraocular pressure (IOP), oxidative stress or mitochondrial dysfunction. Additionally, alterations in serum antibody profiles of glaucoma patients, upregulation (e.g. anti-HSP60, anti-MBP) and downregulation (e.g. anti-14-3-3), have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. However, it is known that elicited autoimmunity causes retinal ganglion cell loss resulting in glaucomatous-like damage and according to the autoaggressive nature of some autoantibodies we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Furthermore, glaucomatous serum has the potential to influence neuroretinal cell regulatory processes. Importantly, we demonstrate that some autoantibodies hold neuroprotective potential for neuroretinal cells. The protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium between autoaggression and protection remain subject of future examinations and offer promising target sites for new therapeutic approaches. Additionally, the changes in antibody profiles could be used as highly sensitive and specific marker for diagnostics purposes. Early diagnosis and intervention in risk patients would offer the chance of early treatment and to slow down the progression of glaucoma and delay the resulting blindness.


PLOS ONE | 2012

Serum and Antibodies of Glaucoma Patients Lead to Changes in the Proteome, Especially Cell Regulatory Proteins, in Retinal Cells

Katharina Bell; Sebastian Funke; Norbert Pfeiffer; Franz H. Grus

Purpose Previous studies show significantly specifically changed autoantibody reactions against retinal antigens in the serum of glaucoma and ocular hypertension (OHT) patients in comparison to healthy people. As pathogenesis of glaucoma still is unknown the aim of this study was to analyze if the serum and antibodies of glaucoma patients interact with neuroretinal cells. Methods R28 cells were incubated with serum of patients suffering from primary open angle glaucoma (POAG), normal tension glaucoma (NTG) or OHT, POAG serum after antibody removal and serum from healthy people for 48 h under a normal or an elevated pressure of 15000 Pa (112 mmHg). RGC5 cells were additionally incubated with POAG antibodies under a normal pressure. Protein profiles of the R28 cells were measured with Seldi-Tof-MS, protein identification was performed with Maldi-TofTof-MS. Protein analysis of the RGC5 cells was performed with ESI-Orbitrap MS. Statistical analysis including multivariate statistics, variance component analysis as well as calculating Mahalanobis distances was performed. Results Highly significant changes of the complex protein profiles after incubation with glaucoma and OHT serum in comparison to healthy serum were detected, showing specific changes in the cells (e.g. Protein at 9192 Da (p<0.001)). The variance component analysis showed an effect of the serum of 59% on the cells. The pressure had an effect of 11% on the cells. Antibody removal led to significantly changed cell reactions (p<0.03). Furthermore, the incubation with POAG serum and its antibodies led to pro-apoptotic changes of proteins in the cells. Conclusions These studies show that the serum and the antibodies of glaucoma patients significantly change protein expressions involved in cell regulatory processes in neuroretinal cells. These could lead to a higher vulnerability of retinal cells towards stress factors such as an elevated IOP and eventually could lead to an increased apoptosis of the cells as in glaucoma.


Current Opinion in Pharmacology | 2013

Autoimmune biomarkers in glaucoma patients

Oliver W. Gramlich; Katharina Bell; Nadine von Thun und Hohenstein-Blaul; Corina Wilding; Sabine Beck; Norbert Pfeiffer; Franz H. Grus

There is growing evidence showing an autoimmune involvement in the pathogenesis of glaucoma, and that alterations in natural occurring autoantibody levels play a key role. The upregulation of autoantibodies can be associated with fatal conditions, but several studies demonstrate that natural autoantibodies entail also protective characteristics and influence the protein expression of neuroretinal cells. A disbalance of natural occurring autoantibodies may shift the physiological equilibrium of protective immunity leading to a predisposition for developing glaucoma. This article highlights recent advances in understanding of autoimmune mechanisms in the pathogenesis of glaucoma.


PLOS ONE | 2014

γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway.

Corina Wilding; Katharina Bell; Sabine Beck; Sebastian Funke; Norbert Pfeiffer; Franz H. Grus

The family of synuclein proteins (α, β and γ) are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody) but also down-regulations (e.g. γ-synuclein antibody) of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5) as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15%) and decreased reactive oxygen species levels (up to −12%) of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated) and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated). These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical stainings. These findings let us assume a novel physiological function of γ-synuclein antibodies and give insights in the role of autoantibodies in glaucoma. We hypothesize that the down-regulation of autoantibodies found in glaucoma patients lead to a loss of protective autoimmunity.


Journal of Pharmacological Sciences | 2015

GFAP antibodies show protective effect on oxidatively stressed neuroretinal cells via interaction with ERP57.

Corina Wilding; Katharina Bell; Sebastian Funke; Sabine Beck; Norbert Pfeiffer; Franz H. Grus

The pathogenesis of glaucoma, a common neurodegenerative disease, involves an immunologic component. Changes in the natural autoantibody profile of glaucoma patients were detected, showing not only up-regulated but also down-regulated immunoreactivities. In recent studies we were able to demonstrate that the antibody changes have a large influence on protein profiles of neuroretinal cells. Furthermore we could demonstrate neuroprotective potential of one of the down-regulated antibodies (γ-synuclein antibody). Anti-GFAP antibody is another antibody found down-regulated in glaucoma patients. Since GFAP expression is intensified in glaucomatous retina, the aim of this study was to detect the effect of GFAP antibodies on neuroretinal cells. This is realized with a viability-test as well as proteomic analysis of cells incubated with GFAP antibodies. Furthermore, possible interaction partners of the GFAP antibody in neuroretinal cells were identified by western blot, mass spectrometry and indirect immunofluorescence staining. We found that the GFAP antibody is able to protect cells from oxidative stress, which is due to changed protein expressions of the actin cytoskeleton. Furthermore we detected a cross-reaction of the antibody to endoplasmic reticulum resident protein 57 on the cell membrane, which seems to lead to a changed signaling in the cells triggering the protective effects.


Journal of Neurochemistry | 2016

Neuroprotective effects of antibodies on retinal ganglion cells in an adolescent retina organ culture

Katharina Bell; Corina Wilding; Sebastian Funke; Natarajan Perumal; Sabine Beck; Dominik Wolters; Jana Holz-Müller; Norbert Pfeiffer; Franz H. Grus

Glaucoma, a neurodegenerative disease, is characterized by a progressive loss of retinal ganglion cells (rgc). Up‐ and down‐regulated autoantibody immunoreactivities in glaucoma patients have been demonstrated. Previous studies showed protective effects of down‐regulated antibodies [gamma (γ)‐synuclein and glial fibrillary acidic protein [GFAP]) on neuroretinal cells. The aim of this study was to test these protective antibody effects on rgc in an organ culture model and to get a better understanding of cell–cell interactions of the retina in the context of the protective effect. We used an adolescent retinal organ culture (pig) with an incubation time of up to 4 days. Retinal explants were incubated with different antibodies for 24 h (anti‐GFAP, anti‐γ‐synuclein and anti‐myoglobin antibody as a control). Brn3a and TUNEL staining were performed. We also conducted glutamine synthetase staining and quantification of the retinal explants. Mass spectrometry analyses were performed as well as protein analyses via microarray. We detected a continuous decrease of rgc/mm in the retinal explants throughout the 4 days of incubation with increased TUNEL rgc staining. Immunohistochemical analyses showed a protective effect of anti‐γ‐synuclein (increased rgc/mm of 41%) and anti‐GFAP antibodies (increased rgc/mm of 37%). Mass spectrometric, microarray and immunohistochemical analyses demonstrated Müller cell involvement and decreased endoplasmic reticulum stress response in the antibody‐treated retinae. We could detect that the tested antibodies have a protective effect on rgc which seems to be the result of reduced stress levels in the retina as well as a shift of glutamine synthetase localization in the endfeet of the Müller cells towards the inner retinal layer.


European Journal of Pharmacology | 2016

Autoimmune aspects in glaucoma

Nadine von Thun und Hohenstein-Blaul; Katharina Bell; Norbert Pfeiffer; Franz H. Grus

The pathogenesis of glaucoma, a common neurodegenerative disease, involves an immunologic component. Studies demonstrate changes of autoantibody concentrations against retinal and optic nerve head antigens in glaucoma patients. Furthermore we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Clinical studies showed up regulated, but also significantly down-regulated autoantibody levels. These antibodies belong to the natural autoimmunity. The upregulation of autoantibodies can be associated with fatal conditions, but several studies demonstrate that natural autoantibodies entail also neuroprotective characteristics and influence the protein expression of neuroretinal cells. A misbalance in the physiological equilibrium may shift from regulatory immunity into a neuroinflammatory degenerative process, what may lead to a predisposition to glaucoma. However, the protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium of natural autoimmunity between autoaggression and neuroprotection offer promising target sites for new therapeutic approaches. Finally, the changes in antibody profiles represent a new opportunity as highly sensitive and specific biomarkers for diagnostics purposes.


Trials | 2017

A prospective, randomised, placebo-controlled, double-masked, three-armed, multicentre phase II/III trial for the Study of a Topical Treatment of Ischaemic Central Retinal Vein Occlusion to Prevent Neovascular Glaucoma – the STRONG study: study protocol for a randomised controlled trial

Katrin Lorenz; Yvonne Scheller; Katharina Bell; Franz H. Grus; Katharina A. Ponto; Felix Bock; Claus Cursiefen; Jens Flach; Marta Gehring; Tunde Peto; Rufino Silva; Yossi Tal; Norbert Pfeiffer

BackgroundNeovascular glaucoma (NVG) is rare, comprising only 3.9% of all glaucoma cases. The most common cause of NVG is ischaemic central retinal vein occlusion (iCRVO). NVG frequently results in blindness and painful end-stage glaucomatous damage leading to the need for enucleation. Currently, there is no preventive therapy for NVG following iCRVO. Rescue treatments have severe drawbacks. Accordingly, there is a great need for preventing the often visually devastating outcomes of NVG. The STRONG study is designed to test whether the topically active anti-angiogenic agent aganirsen is able to inhibit the formation of neovascularisation leading to the development of secondary NVG in eyes with iCRVO. At the same time, STRONG will provide important information on the natural course of iCRVO and NVG in a large and well-characterised cohort of such patients.Methods/designThis protocol describes a phase II/III, prospective, randomised, placebo-controlled, double-masked, three-armed multicentre study for the investigation of aganirsen, a new topical treatment for iCRVO in order to prevent NVG. The study will evaluate the efficacy of two different doses of this newly developed antisense oligonucleotide formulated in an eye emulsion to avoid new vessel formation by blocking insulin receptor substrate-1 (IRS)-1. This leads to subsequent down-regulation of both angiogenic as well as proinflammatory growth factors such as vascular endothelial growth factor (VEGF) and tumour necrosis factor (TNF). Eligible patients (n = 333) will be treated with topical aganirsen or placebo for a period of 24 weeks. They will also be invited to participate in substudies involving analysis of gonioscopic images, detection of biomarkers for NVG and risk factors for iCRVO.DiscussionThe STRONG study has the potential to offer a new treatment modality for patients suffering from iCRVO with a high risk of developing NVG. The topical administration can reduce patients’ burden and risk related to rescue treatment, such as destructive laser treatment or enucleation, but requires a high level of patient compliance.Trial registrationEudraCT: 2014-000239-18; ClinicalTrials.gov, ID: NCT02947867. (Registered on 15 October 2016); see also http://strong-nvg.com.


PLOS ONE | 2017

First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery

Norbert Pfeiffer; Bogomil Voykov; Giulia Renieri; Katharina Bell; Paul Richter; Melanie Weigel; Hagen Thieme; Barbara Wilhelm; Katrin Lorenz; Martin Feindor; Katja Wosikowski; Michel Janicot; Daniela Päckert; Regina Römmich; Carola Mala; Petra Fettes; Eugen Leo

Purpose To evaluate the safety and tolerability of intravitreal ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in patients with primary open angle glaucoma (POAG) undergoing trabeculectomy (TE; glaucoma filtration surgery). Methods In this prospective phase I trial glaucoma patients scheduled for TE with mitomycin C (MMC) received a single intravitreal injection of ISTH0036 at the end of surgery in escalating total doses of 6.75 μg, 22.5 μg, 67.5 μg or 225 μg, resulting in calculated intraocular ISTH0036 concentrations in the vitreous humor of approximately 0.3 μM, 1 μM, 3 μM or 10 μM after injection, respectively. Outcomes assessed included: type and frequency of adverse events (AEs), intraocular pressure (IOP), numbers of interventions post trabeculectomy, bleb survival, visual acuity, visual field, electroretinogram (ERG), slit lamp biomicroscopy and optic disc assessment. Results In total, 12 patients were treated in the 4 dose groups. Main ocular AEs observed were corneal erosion, corneal epithelium defect, or too high or too low IOP, among others. No AE was reported to be related to ISTH0036. All other safety-related analyses did not reveal any toxicities of concern, either. The mean medicated preoperative IOP at decision time-point for surgery was 27.3 mmHg +/- 12.6 mmHg (SD). Mean IOP (±SD) for dose levels 1, 2, 3, and 4 were at Day 43 9.8 mmHg ± 1.0 mmHg, 11.3 mmHg ± 6.7 mmHg, 5.5 mmHg ± 3.0 mmHg and 7.5 mmHg ± 2.3 mmHg SD; and at Day 85 9.7 mmHg ± 3.3 mmHg, 14.2 mmHg ± 6.5 mmHg, 5.8 mmHg ± 1.8 mmHg and 7.8 mmHg ± 0.6 mmHg, respectively. In contrast to IOP values for dose levels 1 and 2, IOP values for dose levels 3 and 4 persistently remained below 10 mmHg throughout the observation period. Conclusion This first-in-human trial demonstrates that intravitreal injection of ISTH0036 at the end of TE is safe. Regarding IOP control, single-dose ISTH0036 administration of 67.5 μg or 225 μg at the time of TE resulted in IOP values persistently < 10 mmHg over the three month postoperative observation period.


PLOS ONE | 2017

Efficacy and safety of preoperative IOP reduction using a preservative-free fixed combination of dorzolamide/timolol eye drops versus oral acetazolamide and dexamethasone eye drops and assessment of the clinical outcome of trabeculectomy in glaucoma

Katrin Lorenz; Joanna Wasielica-Poslednik; Katharina Bell; Giulia Renieri; Alexander Keicher; Christian Ruckes; Norbert Pfeiffer; Hagen Thieme

Introduction To demonstrate that preoperative treatment for 28 days with topical dorzolamide/timolol is non-inferior (Δ = 4 mm Hg) to oral acetazolamide and topical dexamethasone (standard therapy) in terms of intraocular pressure (IOP) reduction 3 and 6 months after trabeculectomy in glaucoma patients. Materials and methods Sixty-two eyes undergoing trabeculectomy with mitomycin C were included in this monocentric prospective randomized controlled study. IOP change between baseline and 3 months post-op was defined as the primary efficacy variable. Secondary efficacy variables included the number of 5-fluorouracil (5-FU) injections, needlings, suture lyses, preoperative IOP change, hypertension rate and change of conjunctival redness 3 and 6 months post-op. Safety was assessed based on the documentation of adverse events. Results Preoperative treatment with topical dorzolamide/timolol was non-inferior to oral acetazolamide and topical dexamethasone in terms of IOP reduction 3 months after trabeculectomy (adjusted means -8.12 mmHg versus -8.30 mmHg; Difference: 0.18; 95% CI -1.91 to 2.26, p = 0.8662). Similar results were found 6 months after trabeculectomy (-9.13 mmHg versus -9.06 mmHg; p = 0.9401). Comparable results were also shown for both groups concerning the classification of the filtering bleb, corneal staining, and numbers of treatments with 5-FU, needlings and suture lyses. More patients reported AEs in the acetazolamide/dexamethasone group than in the dorzolamide/timolol group. Discussion Preoperative, preservative-free, fixed-dose dorzolamide/timolol seems to be equally effective as preoperative acetazolamide and dexamethasone and has a favourable safety profile.

Collaboration


Dive into the Katharina Bell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge