Katharina Dinger
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katharina Dinger.
Disease Models & Mechanisms | 2015
Insa Bultmann-Mellin; Anne Conradi; Alexandra C. Maul; Katharina Dinger; Frank Wempe; Alexander P. Wohl; Thomas Imhof; F. Thomas Wunderlich; Alexander C. Bunck; Tomoyuki Nakamura; Katri Koli; Wilhelm Bloch; Alexander Ghanem; Andrea Heinz; Harald von Melchner; Gerhard Sengle; Anja Sterner-Kock
Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.
Scientific Reports | 2016
Katharina Dinger; Philipp Kasper; Eva Hucklenbruch-Rother; Christina Vohlen; Eva Jobst; Ruth Janoschek; Inga Bae-Gartz; Silke van Koningsbruggen-Rietschel; Christian Plank; Jörg Dötsch; Miguel A. Alejandre Alcazar
Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma.
Journal of Nutrition | 2014
Miguel A. Alejandre Alcazar; Katharina Dinger; Eva Rother; Iris Östreicher; Christina Vohlen; Christian Plank; Jörg Dötsch
BACKGROUND Intrauterine growth restriction (IUGR) is intimately linked with postnatal catch-up growth, leading to impaired lung structure and function. However, the impact of catch-up growth induced by early postnatal hyperalimentation (HA) on the lung has not been addressed to date. OBJECTIVE The aim of this study was to investigate whether prevention of HA subsequent to IUGR protects the lung from 1) deregulation of the transforming growth factor-β(TGF-β)/bone morphogenetic protein (BMP) pathway, 2) activation of interleukin (IL)-6 signaling, and 3) profibrotic processes. METHODS IUGR was induced in Wistar rats by isocaloric protein restriction during gestation by feeding a control (Co) or a low-protein diet with 17% or 8% casein, respectively. On postnatal day 1 (P1), litters from both groups were randomly reduced to 6 pups per dam to induce HA or adjusted to 10 pups and fed with standard diet: Co, Co with HA (Co-HA), IUGR, and IUGR with HA (IUGR-HA). RESULTS Birth weights in rats after IUGR were lower than in Co rats (P < 0.05). HA during lactation led to accelerated body weight gain from P1 to P23 (Co vs. Co-HA, IUGR vs. IUGR-HA; P < 0.05). At P70, prevention of HA after IUGR protected against the following: 1) activation of both TGF-β [phosphorylated SMAD (pSMAD) 2; plasminogen activator inhibitor 1 (Pai1)] and BMP signaling [pSMAD1; inhibitor of differentiation (Id1)] compared with Co (P < 0.05) and Co or IUGR (P < 0.05) rats, respectively; 2) greater mRNA expression of interleukin (Il) 6 and Il13 (P < 0.05) as well as activation of signal transducer and activator of transcription 3 (STAT3) signaling (P < 0.05) after IUGR-HA; and 3) greater gene expression of collagen Iα1 and osteopontin (P < 0.05) and increased deposition of bronchial subepithelial connective tissue in IUGR-HA compared with Co and IUGR rats. Moreover, HA had a significant additive effect (P < 0.05) on the increased enhanced pause (indicator of airway resistance) in the IUGR group (P < 0.05) at P70. CONCLUSIONS This study demonstrates a dual mechanism in IUGR-associated lung disease that is 1) IUGR-dependent and 2) HA-mediated and thereby offers new avenues to develop innovative preventive strategies for perinatal programming of adult lung diseases.
Obesity | 2016
Ruth Janoschek; Inga Bae‐Gartz; Christina Vohlen; Miguel A. Alejandre Alcazar; Katharina Dinger; Sarah Appel; Jörg Dötsch; E. Hucklenbruch-Rother
One major risk factor for childhood overweight is maternal obesity. The underlying molecular mechanisms are ill‐defined, and effective prevention strategies are missing.
Medicine and Science in Sports and Exercise | 2016
Inga Bae-Gartz; Ruth Janoschek; Cora-Sophia Kloppe; Christina Vohlen; Frederik Roels; André Oberthür; Miguel A. Alejandre Alcazar; Gregor Lippach; Philipp S. Muether; Katharina Dinger; Nina Ferrari; Christine Graf; Jörg Dötsch; Eva Hucklenbruch-Rother
PURPOSE Maternal obesity is known to predispose the offspring to impaired glucose metabolism and obesity associated with low-grade inflammation and hypothalamic dysfunction. Because preventive approaches in this context are missing to date, we aimed to identify molecular mechanisms in the offspring that are affected by maternal exercise during pregnancy. METHODS Diet-induced obese mouse dams were divided into a sedentary obese (high-fat diet [HFD]) group and an obese intervention (HFD-running intervention [RUN]) group, which performed voluntary wheel running throughout gestation. Male offspring were compared with the offspring of a sedentary lean control group at postnatal day 21. RESULTS HFD and HFD-RUN offspring showed increased body weight and white adipose tissue mass. Glucose tolerance testing showed mild impairment only in HFD offspring. Serum interleukin-6 (IL-6) levels, hypothalamic and white adipose tissue IL-6 gene expressions, and phosphorylation of signal transducer and activator of transcription 3 in HFD offspring were significantly increased, whereas HFD-RUN was protected against these changes. The altered hypothalamic global gene expression in HFD offspring showed partial normalization in HFD-RUN offspring, especially with respect to IL-6 action. CONCLUSION Maternal exercise in obese pregnancies effectively reduces IL-6 trans-signaling and might be the underlying mechanism for the amelioration of glucose metabolism at postnatal day 21 independent of body composition.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2017
Chansutha Thangaratnarajah; Katharina Dinger; Christina Vohlen; Christian Klaudt; Jawed Nawabi; Eva Lopez Garcia; Grazyna Kwapiszewska; Julia Dobner; Kai D. Nüsken; Silke van Koningsbruggen-Rietschel; Stephan von Hörsten; Jörg Dötsch; Miguel A. Alejandre Alcazar
Individuals with intrauterine growth restriction (IUGR) are at risk for chronic lung disease. Using a rat model, we showed in our previous studies that altered lung structure is related to IL-6/STAT3 signaling. As neuropeptide Y (NPY), a coneurotransmitter of the sympathetic nervous system, regulates proliferation and immune response, we hypothesized that dysregulated NPY after IUGR is linked to IL-6, impaired myofibroblast function, and alveolar growth. IUGR was induced in rats by isocaloric low-protein diet; lungs were analyzed on embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Finally, primary neonatal lung myofibroblasts (pnF) and murine embryonic fibroblasts (MEF) were used to assess proliferation, apoptosis, migration, and IL-6 expression. At E21, NPY and IL-6 expression was decreased, and AKT/PKC and STAT3/AMPKα signaling was reduced. Early reduction of NPY/IL-6 was associated with increased chord length in lungs after IUGR at P3, indicating reduced alveolar formation. At P23, however, IUGR rats exhibited a catch-up of body weight and alveolar growth coupled with more proliferating myofibroblasts. These structural findings after IUGR were linked to activated NPY/PKC, IL-6/AMPKα signaling. Complementary, IUGR-pnF showed increased survival, impaired migration, and reduced IL-6 compared with control-pnF (Co-pnF). In contrast, NPY induced proliferation, migration, and increased IL-6 synthesis in fibroblasts. Additionally, NPY-/- mice showed reduced IL-6 signaling and less proliferation of lung fibroblasts. Our study presents a novel role of NPY during alveolarization: NPY regulates 1) IL-6 and lung STAT3/AMPKα signaling, and 2) proliferation and migration of myofibroblasts. These new insights in pulmonary neuroimmune interaction offer potential strategies to enable lung growth.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2017
Insa Bultmann-Mellin; Katharina Dinger; Carolin Debuschewitz; Katharina M. A. Loewe; Yvonne Melcher; Miro T. W. Plum; Sarah Appel; Gunter Rappl; Sebastian Willenborg; Astrid Schauss; Christian Jüngst; Marcus Krüger; Sven P. Dressler; Tomoyuki Nakamura; Frank Wempe; Miguel A. Alejandre Alcazar; Anja Sterner-Kock
Deficiency of the extracellular matrix protein latent transforming growth factor-β (TGF-β)-binding protein-4 (LTBP4) results in lack of intact elastic fibers, which leads to disturbed pulmonary development and lack of normal alveolarization in humans and mice. Formation of alveoli and alveolar septation in pulmonary development requires the concerted interaction of extracellular matrix proteins, growth factors such as TGF-β, fibroblasts, and myofibroblasts to promote elastogenesis as well as vascular formation in the alveolar septae. To investigate the role of LTBP4 in this context, lungs of LTBP4-deficient (Ltbp4-/-) mice were analyzed in close detail. We elucidate the role of LTBP4 in pulmonary alveolarization and show that three different, interacting mechanisms might contribute to alveolar septation defects in Ltbp4-/- lungs: 1) absence of an intact elastic fiber network, 2) reduced angiogenesis, and 3) upregulation of TGF-β activity resulting in profibrotic processes in the lung.
Endocrinology | 2017
Philipp Kasper; Christina Vohlen; Katharina Dinger; Jasmine Mohr; E. Hucklenbruch-Rother; Ruth Janoschek; Jessica Köth; Jan Matthes; Sarah Appel; Jörg Dötsch; Miguel A. Alejandre Alcazar
&NA; Childhood obesity is associated with renal diseases. Maternal obesity is a risk factor linked to increased adipocytokines and metabolic disorders in the offspring. Therefore, we studied the impact of maternal obesity on renal‐intrinsic insulin and adipocytokine signaling and on renal function and structure. To induce maternal obesity, female mice were fed a high‐fat diet (HFD) or a standard diet (SD; control group) prior to mating, during gestation, and throughout lactation. A third group of dams was fed HFD only during lactation (HFD‐Lac). After weaning at postnatal day (P)21, offspring of all groups received SD. Clinically, HFD offspring were overweight and insulin resistant at P21. Although no metabolic changes were detected at P70, renal sodium excretion was reduced by 40%, and renal matrix deposition increased in the HFD group. Mechanistically, two stages were differentiated. In the early stage (P21), compared with the control group, HFD showed threefold increased white adipose tissue, impaired glucose tolerance, hyperleptinemia, and hyperinsulinemia. Renal leptin/Stat3‐signaling was activated. In contrast, the Akt/ AMPK&agr; cascade and Krüppel‐like factor 15 expression were decreased. In the late stage (P70), although no metabolic differences were detected in HFD when compared with the control group, leptin/Stat3‐signaling was reduced, and Akt/AMPK&agr; was activated in the kidneys. This effect was linked to an increase of proliferative (cyclinD1/D2) and profibrotic (ctgf/collagen III&agr;1) markers, similar to leptin‐deficient mice. HFD‐Lac mice exhibited metabolic changes at P21 similar to HFD, but no other persistent changes. This study shows a link between maternal obesity and metabolic programming of renal structure and function and intrinsic‐renal Stat3/Akt/AMPK&agr; signaling in the offspring.
Journal of Visualized Experiments | 2018
Katharina Dinger; Jasmine Mohr; Christina Vohlen; Dharmesh V. Hirani; Eva Hucklenbruch-Rother; Regina Ensenauer; Jörg Dötsch; Miguel A. Alejandre Alcazar
Obesity and respiratory disorders are major health problems. Obesity is becoming an emerging epidemic with an expected number of over 1 billion obese individuals worldwide by 2030, thus representing a growing socioeconomic burden. Simultaneously, obesity-related comorbidities, including diabetes as well as heart and chronic lung diseases, are continuously on the rise. Although obesity has been associated with increased risk for asthma exacerbations, worsening of respiratory symptoms, and poor control, the functional role of obesity and perturbed metabolism in the pathogenesis of chronic lung disease is often underestimated, and underlying molecular mechanisms remain elusive. This article aims to present methods to assess the effect of obesity on metabolism, as well as lung structure and function. Here, we describe three techniques for mice studies: (1) assessment of intraperitoneal glucose tolerance (ipGTT) to analyze the effect of obesity on glucose metabolism; (2) measurement of airway resistance (Res) and respiratory system compliance (Cdyn) to analyze the effect of obesity on lung function; and (3) preparation and fixation of the lung for subsequent quantitative histological assessment. Obesity-related lung diseases are probably multifactorial, stemming from systemic inflammatory and metabolic dysregulation that potentially adversely influence lung function and the response to therapy. Therefore, a standardized methodology to study molecular mechanisms and the effect of novel treatments is essential.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2018
Jawed Nawabi; Christina Vohlen; Katharina Dinger; Chansutha Thangaratnarajah; Christian Klaudt; Eva Lopez Garcia; Dharmesh V. Hirani; Pinar Haznedar-Karakaya; Iris Macheleidt; Margarete Odenthal; Kai D. Nüsken; Jörg Dötsch; Miguel A. Alejandre Alcazar
Intrauterine growth restriction (IUGR) is a risk factor for neonatal chronic lung disease (CLD) characterized by reduced alveoli and perturbed matrix remodeling. Previously, our group showed an activation of myofibroblasts and matrix remodeling in rat lungs after IUGR. Because growth hormone (GH) and insulin-like growth factor I (IGF-I) regulate development and growth, we queried 1) whether GH/IGF-I signaling is dysregulated in lungs after IUGR and 2) whether GH/IGF-I signaling is linked to neonatal lung myofibroblast function. IUGR was induced in Wistar rats by isocaloric low-protein diet during gestation. Lungs were obtained at embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Murine embryonic fibroblasts (MEF) or primary neonatal myofibroblasts from rat lungs of control (pnFCo) and IUGR (pnFIUGR) were used for cell culture studies. In the intrauterine phase (E21), we found a reduction in GH receptor (GH-R), Stat5 signaling and IGF-I expression in lungs after IUGR. In the postnatal phase (P3-P23), catchup growth after IUGR was linked to increased GH mRNA, GH-R protein, activation of proliferative Stat5/Akt signaling, cyclin D1 and PCNA in rat lungs. On P23, a thickening of the alveolar septae was related to increased vimentin and matrix deposition, indicating fibrosis. In cell culture studies, nutrient deprivation blocked GH-R/IGF-IR signaling and proliferation in MEFs; this was reversed by IGF-I. Proliferation and Stat5 activation were increased in pnFIUGR. IGF-I and GH induced proliferation and migration of pnFCo; only IGF-I had these effects on pnFIUGR. Thus, we show a novel mechanism by which the GH/IGF-I axis in lung myofibroblasts could account for structural lung changes after IUGR.