Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharina Hanna is active.

Publication


Featured researches published by Katharina Hanna.


Genes & Development | 2010

RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage

Matthias Schaefer; Tim Pollex; Katharina Hanna; Francesca Tuorto; Madeleine Meusburger; Mark Helm; Frank Lyko

Dnmt2 proteins are the most conserved members of the DNA methyltransferase enzyme family, but their substrate specificity and biological functions have been a subject of controversy. We show here that, in addition to tRNA(Asp-GTC), tRNA(Val-AAC) and tRNA(Gly-GCC) are also methylated by Dnmt2. Drosophila Dnmt2 mutants showed reduced viability under stress conditions, and Dnmt2 relocalized to stress granules following heat shock. Strikingly, stress-induced cleavage of tRNAs was Dnmt2-dependent, and Dnmt2-mediated methylation protected tRNAs against ribonuclease cleavage. These results uncover a novel biological function of Dnmt2-mediated tRNA methylation, and suggest a role for Dnmt2 enzymes during the biogenesis of tRNA-derived small RNAs.


Nucleic Acids Research | 2008

RNA cytosine methylation analysis by bisulfite sequencing

Matthias Schaefer; Tim Pollex; Katharina Hanna; Frank Lyko

Covalent modifications of nucleic acids play an important role in regulating their functions. Among these modifications, (cytosine-5) DNA methylation is best known for its role in the epigenetic regulation of gene expression. Post-transcriptional RNA modification is a characteristic feature of noncoding RNAs, and has been described for rRNAs, tRNAs and miRNAs. (Cytosine-5) RNA methylation has been detected in stable and long-lived RNA molecules, but its function is still unclear, mainly due to technical limitations. In order to facilitate the analysis of RNA methylation patterns we have established a protocol for the chemical deamination of cytosines in RNA, followed by PCR-based amplification of cDNA and DNA sequencing. Using tRNAs and rRNAs as examples we show that cytosine methylation can be reproducibly and quantitatively detected by bisulfite sequencing. The combination of this method with deep sequencing allowed the analysis of a large number of RNA molecules. These results establish a versatile method for the identification and characterization of RNA methylation patterns, which will be useful for defining the biological function of RNA methylation.


Cancer Research | 2009

Azacytidine Inhibits RNA Methylation at DNMT2 Target Sites in Human Cancer Cell Lines

Matthias Schaefer; Sabine Hagemann; Katharina Hanna; Frank Lyko

The cytosine analogues azacytidine and decitabine are currently being developed as drugs for epigenetic cancer therapy. Although various studies have shown that both drugs are effective in inhibiting DNA methylation, it has also become clear that their mode of action is not limited to DNA demethylation. Because azacytidine is a ribonucleoside, the primary target of this drug may be cellular RNA rather than DNA. We have now analyzed the possibility that azacytidine inhibits the RNA methyltransferase DNMT2. We found that DNMT2 is variably expressed in human cancer cell lines. RNA bisulfite sequencing showed that azacytidine, but not decitabine, inhibits cytosine 38 methylation of tRNA(Asp), a major substrate of DNMT2. Azacytidine caused a substantially stronger effect than decitabine on the metabolic rate of all the cancer cell lines tested, consistent with an effect of this drug on RNA metabolism. Of note, drug-induced loss of RNA methylation seemed specific for DNMT2 target sites because we did not observe any significant demethylation at sites known to be methylated by other RNA methyltransferases. Our results uncover a novel and quantifiable drug activity of azacytidine and raise the possibility that tRNA hypomethylation might contribute to patient responses.


Cardiovascular Research | 2002

MCP-1 induces activation of MAP-kinases ERK, JNK and p38 MAPK in human endothelial cells

Martina Werle; Ulrike Schmal; Katharina Hanna; Jörg Kreuzer

Activation of vascular endothelial cells (ECs) plays an important pathogenic role in the development of atherosclerosis. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemoattractant of monocytes. Besides induction of monocyte recruitment, it has been suggested that MCP-1 can also affect the cellular responses of ECs. We investigated whether MCP-1 activated the three major mitogen activated protein (MAP)-kinases extracellular signal-regulated kinase (ERK), c-Jun amino terminal kinase (JNK) and p38 MAPK. Stimulation of ECs with MCP-1 induced a time- and concentration-dependent activation of all three MAP-kinases, concentrations as low as 0.1 ng/ml were sufficient for this mechanism. MCP-1 also induced secretion of matrix metalloproteinase (MMP)-2 which along with ERK activation was inhibited by PD098059. The results demonstrate that MCP-1 can lead to direct activation of MAP kinases together with induction of MMP2 in ECs. Our data thus propose a new mechanism for the proatherogenic effect of MCP-1.


EMBO Reports | 2013

Efficient RNA virus control in Drosophila requires the RNA methyltransferase Dnmt2.

Zeljko Durdevic; Katharina Hanna; Beth Gold; Tim Pollex; Sara Cherry; Frank Lyko; Matthias Schaefer

Drosophila use small‐interfering RNA mechanisms to limit the amplification of viral genomes. However, it is unclear how small RNA interference components recognize and separate viral from cellular RNA. Dnmt2 enzymes are highly conserved RNA methyltransferases with substrate specificity towards cellular tRNAs. We report here that Dnmt2 is required for efficient innate immune responses in Drosophila. Dnmt2 mutant flies accumulate increasing levels of Drosophila C virus and show activated innate immune responses. Binding of Dnmt2 to DCV RNA suggests that Dnmt2 contributes to virus control directly, possibly by RNA methylation. These observations demonstrate a role for Dnmt2 in antiviral defence.


Cell Reports | 2013

The RNA Methyltransferase Dnmt2 Is Required for Efficient Dicer-2-Dependent siRNA Pathway Activity in Drosophila

Zeljko Durdevic; Mehrpouya Balaghy Mobin; Katharina Hanna; Frank Lyko; Matthias Schaefer

Transfer RNA (tRNA) fragmentation in response to stress conditions has been described in many organisms. tRNA fragments have been found in association with small interfering RNA (siRNA) components, but the biological role of these interactions remains unclear. We report here that the tRNA methyltransferase Dnmt2 is essential for efficient Dicer-2 (Dcr-2) function in Drosophila. Using small RNA (sRNA) sequencing, we confirmed that Dnmt2 limits the extent of tRNA fragmentation during the heat-shock response. tRNAs as well as tRNA fragments serve as Dcr-2 substrates, and Dcr-2 degrades tRNA-derived sequences, especially under heat-shock conditions. tRNA-derived RNAs are able to inhibit Dcr-2 activity on long double-stranded RNAs (dsRNAs). Consequently, heat-shocked Dnmt2 mutant animals accumulate dsRNAs, produce fewer siRNAs, and show misregulation of siRNA pathway-dependent genes. These results reveal the impact of tRNA fragmentation on siRNA pathways and implicate tRNA modifications in the regulation of sRNA homeostasis during the heat-shock response.


Biology Open | 2015

The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals.

Günter Vogt; Cassandra Falckenhayn; Anne Schrimpf; Katharina Schmid; Katharina Hanna; Jörn Panteleit; Mark Helm; Ralf Schulz; Frank Lyko

ABSTRACT The parthenogenetic all-female marbled crayfish is a novel research model and potent invader of freshwater ecosystems. It is a triploid descendant of the sexually reproducing slough crayfish, Procambarus fallax, but its taxonomic status has remained unsettled. By cross-breeding experiments and parentage analysis we show here that marbled crayfish and P. fallax are reproductively separated. Both crayfish copulate readily, suggesting that the reproductive barrier is set at the cytogenetic rather than the behavioural level. Analysis of complete mitochondrial genomes of marbled crayfish from laboratory lineages and wild populations demonstrates genetic identity and indicates a single origin. Flow cytometric comparison of DNA contents of haemocytes and analysis of nuclear microsatellite loci confirm triploidy and suggest autopolyploidisation as its cause. Global DNA methylation is significantly reduced in marbled crayfish implying the involvement of molecular epigenetic mechanisms in its origination. Morphologically, both crayfish are very similar but growth and fecundity are considerably larger in marbled crayfish, making it a different animal with superior fitness. These data and the high probability of a divergent future evolution of the marbled crayfish and P. fallax clusters suggest that marbled crayfish should be considered as an independent asexual species. Our findings also establish the P. fallax–marbled crayfish pair as a novel paradigm for rare chromosomal speciation by autopolyploidy and parthenogenesis in animals and for saltational evolution in general. Summary: The triploid marbled crayfish is a rare animal example of speciation by autopolyploidisation and parthenogenesis. It seems to be a particularly suitable model to study how much genetic and epigenetic change is necessary to create a new species.


Nature Ecology and Evolution | 2018

Clonal genome evolution and rapid invasive spread of the marbled crayfish

Julian Gutekunst; Ranja Andriantsoa; Cassandra Falckenhayn; Katharina Hanna; Wolfgang Stein; Jeanne Rasamy; Frank Lyko

The marbled crayfish Procambarus virginalis is a unique freshwater crayfish characterized by very recent speciation and parthenogenetic reproduction. Marbled crayfish also represent an emerging invasive species and have formed wild populations in diverse freshwater habitats. However, our understanding of marbled crayfish biology, evolution and invasive spread has been hampered by the lack of freshwater crayfish genome sequences. We have now established a de novo draft assembly of the marbled crayfish genome. We determined the genome size at approximately 3.5 gigabase pairs and identified >21,000 genes. Further analysis confirmed the close relationship to the genome of the slough crayfish, Procambarusfallax, and also established a triploid AA’B genotype with a high level of heterozygosity. Systematic fieldwork and genotyping demonstrated the rapid expansion of marbled crayfish on Madagascar and established the marbled crayfish as a potent invader of freshwater ecosystems. Furthermore, comparative whole-genome sequencing demonstrated the clonality of the population and their genetic identity with the oldest known stock from the German aquarium trade. Our study closes an important gap in the phylogenetic analysis of animal genomes and uncovers the unique evolutionary history of an emerging invasive species.The marbled crayfish is an emerging invasive species in freshwater habitats. Here, the authors sequence the genome of the marbled crayfish and show that evolution of this decapod crustacean involved genome duplication, triploidy and clonal expansion.


CSH Protocols | 2010

Detection of Cytosine Methylation in RNA Using Bisulfite Sequencing

Tim Pollex; Katharina Hanna; Matthias Schaefer

Post-transcriptional RNA modifications are a characteristic feature of noncoding RNAs and have been described for ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and various other small RNAs. However, the biological function of most of these modifications remains uncharacterized. Cytosine-5 methylation (5mC) has been detected in abundant and long-lived RNA molecules such as rRNAs and tRNAs, but, because of technical limitations, the occurrence of base-methylated cytosines in other RNAs is not known. To facilitate the detection of RNA methylation, we have established a method for analyzing base-methylated cytosines in RNA using bisulfite sequencing. Treatment of RNA with bisulfite causes the chemical deamination of nonmethylated cytosines to uracil, while methylated cytosines remain unaffected. cDNA synthesis followed by polymerase chain reaction (PCR) amplification and DNA sequencing allows investigators to reproducibly and quantitatively distinguish unmethylated cytosines (as thymines) from methylated cytosines in tRNAs and rRNAs. Using high-throughput sequencing approaches, this protocol should enable the characterization of 5mC methylation patterns in any RNA molecule, including low abundance RNAs.


Scientific Reports | 2016

Comprehensive DNA methylation analysis of the Aedes aegypti genome

Cassandra Falckenhayn; Vitor Coutinho Carneiro; Anderson de Mendonça Amarante; Katharina Schmid; Katharina Hanna; Seokyoung Kang; Mark Helm; George Dimopoulos; Marcelo Rosado Fantappié; Frank Lyko

Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation.

Collaboration


Dive into the Katharina Hanna's collaboration.

Top Co-Authors

Avatar

Frank Lyko

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Matthias Schaefer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Cassandra Falckenhayn

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Tim Pollex

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeljko Durdevic

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Julian Gutekunst

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Schrimpf

University of Koblenz and Landau

View shared research outputs
Researchain Logo
Decentralizing Knowledge