Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharina Lückerath is active.

Publication


Featured researches published by Katharina Lückerath.


Cell Death & Differentiation | 2007

The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells

Vladimir Kirkin; Nathalie Cahuzac; Guardiola-Serrano F; Sébastien Huault; Katharina Lückerath; E. Friedmann; N. Novac; W. S. Wels; B. Martoglio; Anne-Odile Hueber; Martin Zörnig

Fas ligand (FasL) is a type II transmembrane protein belonging to the tumor necrosis factor family. Its binding to the cognate Fas receptor triggers the apoptosis that plays a pivotal role in the maintenance of immune system homeostasis. The cell death-inducing property of FasL has been associated with its extracellular domain, which can be cleaved off by metalloprotease activity to produce soluble FasL. The fate of the remaining membrane-anchored N-terminal part of the FasL molecule has not been determined. Here we show that post-translational processing of overexpressed and endogenous FasL in T-cells by the disintegrin and metalloprotease ADAM10 generates a 17-kDa N-terminal fragment, which lacks the receptor-binding extracellular domain. This FasL remnant is membrane anchored and further processed by SPPL2a, a member of the signal peptide peptidase-like family of intramembrane-cleaving proteases. SPPL2a cleavage liberates a smaller and highly unstable fragment mainly containing the intracellular FasL domain (FasL ICD). We show that this fragment translocates to the nucleus and is capable of inhibiting gene transcription. With ADAM10 and SPPL2a we have identified two proteases implicated in FasL processing and release of the FasL ICD, which has been shown to be important for retrograde FasL signaling.


Embo Molecular Medicine | 2015

In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

Kathrin Philipp-Abbrederis; Ken Herrmann; Stefan Knop; Margret Schottelius; Matthias Eiber; Katharina Lückerath; Elke Pietschmann; Stefan Habringer; Carlos Gerngroß; Katharina Franke; Martina Rudelius; Andreas Schirbel; Constantin Lapa; Kristina Schwamborn; Sabine Steidle; Elena Hartmann; Andreas Rosenwald; Saskia Kropf; Ambros J. Beer; Christian Peschel; Hermann Einsele; Andreas K. Buck; Markus Schwaiger; Katharina Götze; Hans-Jürgen Wester; Ulrich Keller

CXCR4 is a G‐protein‐coupled receptor that mediates recruitment of blood cells toward its ligand SDF‐1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [68Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4‐positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [68Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [68Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [18F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34+ flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [68Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4‐directed therapeutic approaches in MM and other diseases.


The Journal of Nuclear Medicine | 2016

First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease

Ken Herrmann; Margret Schottelius; Constantin Lapa; Theresa Osl; Andreas Poschenrieder; Heribert Hänscheid; Katharina Lückerath; Martin Schreder; Christina Bluemel; Markus Knott; Ulrich Keller; Andreas Schirbel; Samuel Samnick; Michael Lassmann; Saskia Kropf; Andreas K. Buck; Hermann Einsele; Hans-Juergen Wester; Stefan Knop

Chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. Based on promising experiences with a radiolabeled CXCR4 ligand (68Ga-pentixafor) for diagnostic receptor targeting, 177Lu- and 90Y-pentixather were recently developed as endoradiotherapeutic vectors. Here, we summarize the first-in-human experience in 3 heavily pretreated patients with intramedullary and extensive extramedullary manifestations of multiple myeloma undergoing CXCR4-directed endoradiotherapy. Methods: CXCR4 target expression was demonstrated by baseline 68Ga-pentixafor PET. Each treatment was approved by the clinical ethics committee. Pretherapeutic 177Lu-pentixather dosimetry was performed before 177Lu-pentixather or 90Y-pentixather treatment. Subsequently, patients underwent additional chemotherapy and autologous stem cell transplantation for bone marrow rescue. Results: A remarkable therapeutic effect was visualized in 2 patients, who showed a significant reduction in 18F-FDG uptake. Conclusion: CXCR4-targeted radiotherapy with pentixather appears to be a promising novel treatment option in combination with cytotoxic chemotherapy and autologous stem cell transplantation, especially for patients with advanced multiple myeloma.


Oncotarget | 2016

[ 68 Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience

Constantin Lapa; Katharina Lückerath; Martina Rudelius; Jan-Stefan Schmid; Alexander Schoene; Andreas Schirbel; Samuel Samnick; Theo Pelzer; Andreas K. Buck; Saskia Kropf; Hans-Jürgen Wester; Ken Herrmann

Chemokine receptor CXCR4 is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging of small cell lung cancer (SCLC) with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine ligand [68Ga]Pentixafor. 10 patients with primarily diagnosed (n=3) or pre-treated (n=7) SCLC (n=9) or large cell neuroendocrine carcinoma of the lung (LCNEC, n=1) underwent [68Ga]Pentixafor-PET/CT. 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG, n=6) and/or somatostatin receptor (SSTR)-directed PET/CT with [68Ga]DOTATOC (n=5) and immunohistochemistry (n=10) served as standards of reference. CXCR4-PET was positive in 8/10 patients and revealed more lesions with significantly higher tumor-to-background ratios than SSTR-PET. Two patients who were positive on [18F]FDG-PET were missed by CXCR4-PET, in the remainder [68Ga]Pentixafor detected an equal (n=2) or higher (n=2) number of lesions. CXCR4 expression of tumor lesions could be confirmed by immunohistochemistry. Non-invasive imaging of CXCR4 expression in SCLC is feasible. [68Ga]Pentixafor as a novel PET tracer might serve as readout for confirmation of CXCR4 expression as prerequisite for potential CXCR4-directed treatment including receptor-radio(drug)peptide therapy.


Cell Death and Disease | 2010

Palmitoylation of human FasL modulates its cell death-inducing function.

Guardiola-Serrano F; Aurélie Rossin; Nathalie Cahuzac; Katharina Lückerath; Inga Maria Melzer; Sébastien Mailfert; Didier Marguet; Martin Zörnig; Anne-Odile Hueber

Fas ligand (FasL) is a transmembrane protein that regulates cell death in Fas-bearing cells. FasL-mediated cell death is essential for immune system homeostasis and the elimination of viral or transformed cells. Because of its potent cytotoxic activity, FasL expression at the cell surface is tightly regulated, for example, via processing by ADAM10 and SPPL2a generating soluble FasL and the intracellular fragments APL (ADAM10-processed FasL form) and SPA (SPPL2a-processed APL). In this study, we report that FasL processing by ADAM10 counteracts Fas-mediated cell death and is strictly regulated by membrane localization, interactions and modifications of FasL. According to our observations, FasL processing occurs preferentially within cholesterol and sphingolipid-rich nanodomains (rafts) where efficient Fas–FasL contact occurs, Fas receptor and FasL interaction is also required for efficient FasL processing, and FasL palmitoylation, which occurs within its transmembrane domain, is critical for efficient FasL-mediated killing and FasL processing.


Theranostics | 2016

11C-Methionine-PET in Multiple Myeloma: Correlation with Clinical Parameters and Bone Marrow Involvement

Constantin Lapa; Stefan Knop; Martin Schreder; Martina Rudelius; Markus Knott; Gerhard Jörg; Samuel Samnick; Ken Herrmann; Andreas K. Buck; Hermann Einsele; Katharina Lückerath

Multiple myeloma (MM) remains an essentially incurable hematologic malignancy originating from clonal plasma cells. This study evaluated the usefulness of the radiotracers 11C-methionine (MET) and 18F-2`-deoxy-2`-fluorodeoxyglucose (FDG) for staging and re-staging in MM. 43 patients with MM underwent both MET- and FDG-PET/CT for staging or re-staging within 3±2 days. Scans were compared on a patient and on a lesion basis. Tracer uptake was correlated with the degree of bone marrow (BM) involvement and standard clinical parameters of disease activity. Additionally, BM samples were stained for L-type amino acid transporter 1 (LAT1) expression in 15 patients. MET-PET detected focal lesions (FL) in 39/43 subjects (90.7%), whereas 10 patients were missed in FDG-PET/CT (detection rate, 33/43; 76.7%; p<0.05). MET depicted more FL in 28/43 patients (65.1%; p<0.001), whereas in the remainder (34.9%, n=15) both tracers yielded comparable results. LAT1 was highly expressed on the cell surface of myeloma cells. Both FDG and MET uptake correlated significantly with biopsy-proven BM involvement (p<0.001), with MET demonstrating a stronger correlation (SUVmean, r=0.9 vs r=0.6; SUVmax, r=0.88 vs r=0.58). Abnormal beta-2-microglobulin and free light chain levels correlated with the presence of focal intramedullary lesions detected in MET- or FDG-PET/CT (MET, p=0.006 and p=0.01, respectively; FDG, p=0.02 and p=0.01). MET appears to be superior to FDG for staging and re-staging of both intra- and extramedullary MM lesions. Tracer uptake correlates with BM involvement, β2m and FLC levels and appears to be a more accurate marker of tumor burden and disease activity.


Theranostics | 2016

68 Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma

Constantin Lapa; Katharina Lückerath; Irene Kleinlein; Camelia Maria Monoranu; Thomas Linsenmann; Almuth F. Kessler; Martina Rudelius; Saskia Kropf; Andreas K. Buck; Ralf-Ingo Ernestus; Hans-Jürgen Wester; Mario Löhr; Ken Herrmann

Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand 68Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent 68Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUVmax, SUVmean). Tumor-to-background ratios (TBR) were calculated for both PET probes. 68Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. 68Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUVmean and SUVmax of 3.0±1.5 and 3.9±2.0 respectively. Respective values for 18F-FET were 4.4±2.0 (SUVmean) and 5.3±2.3 (SUVmax). TBR for SUVmean and SUVmax were higher for 68Ga-Pentixafor than for 18F-FET (SUVmean 154.0±90.7 vs. 4.1±1.3; SUVmax 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high 68Ga-Pentixafor uptake; regions of the same tumor without apparent 68Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, 68Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, 68Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy.


Blood | 2011

Immune modulation by Fas ligand reverse signaling: lymphocyte proliferation is attenuated by the intracellular Fas ligand domain.

Katharina Lückerath; Vladimir Kirkin; Inga Maria Melzer; Frederic B. Thalheimer; Dagmar Siele; Wiebke Milani; Thure Adler; Antonio Aguilar-Pimentel; Marion Horsch; Geert Michel; Johannes Beckers; Dirk H. Busch; Markus Ollert; Valérie Gailus-Durner; Helmut Fuchs; Martin Hrabé de Angelis; Frank J. T. Staal; Krishnaraj Rajalingam; Anne-Odile Hueber; Lothar J. Strobl; Ursula Zimber-Strobl; Martin Zörnig

Fas ligand (FasL) not only induces apoptosis in Fas receptor-bearing target cells, it is also able to transmit signals into the FasL-expressing cell via its intracellular domain (ICD). Recently, we described a Notch-like proteolytic processing of FasL that leads to the release of the FasL ICD into the cytoplasm and subsequent translocation into the nucleus where it may influence gene transcription. To study the molecular mechanism underlying such reverse FasL signaling in detail and to analyze its physiological importance in vivo, we established a knockout/knockin mouse model, in which wild-type FasL was replaced with a deletion mutant lacking the ICD. Our results demonstrate that FasL ICD signaling impairs activation-induced proliferation in B and T cells by diminishing phosphorylation of phospholipase C γ, protein kinase C, and extracellular signal-regulated kinase 1/2. We also demonstrate that the FasL ICD interacts with the transcription factor lymphoid-enhancer binding factor-1 and inhibits lymphoid-enhancer binding factor-1-dependent transcription. In vivo, plasma cell numbers, generation of germinal center B cells, and, consequently, production of antigen-specific immunoglobulin M antibodies in response to immunization with T cell-dependent or T cell-independent antigen are negatively affected in presence of the FasL ICD, suggesting that FasL reverse signaling participates in negative fine-tuning of certain immune responses.


PLOS ONE | 2015

Tumor-associated macrophages in glioblastoma multiforme-a suitable target for somatostatin receptor-based imaging and therapy?

Constantin Lapa; Thomas Linsenmann; Katharina Lückerath; Samuel Samnick; Ken Herrmann; Carolin Stoffer; Ralf-Ingo Ernestus; Andreas K. Buck; Mario Löhr; Camelia-Maria Monoranu

Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using 68Ga-DOTATATE was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.


Materials Today | 2012

Nano-coating protects biofunctional materials

Rupert Tscheliessnig; Martin Zörnig; Eva M. Herzig; Katharina Lückerath; Jens Altrichter; Kristina Kemter; Adnana Paunel-Görgülü; Tim Lögters; Joachim Windolf; Silvia Pabisch; Jindrich Cinatl; Holger F. Rabenau; Alois Jungbauer; Peter Müller-Buschbaum; Martin Scholz; Joachim Koch

The demand to develop convergent technology platforms, such as bio-functionalized medical devices, is rapidly increasing. However, the loss of biological function of the effector molecules during sterilization represents a significant and general problem. Therefore, we have developed and characterized a nano-coating (NC) formulation capable of maintaining the functionality of proteins on biological-device combination products. As a proof of concept, the NC preserved the structural and functional integrity of an otherwise highly fragile antibody immobilized on polyurethane during deleterious sterilizing irradiation (≥ 25 kGy). The NC procedure enables straight-forward terminal sterilization of bio-functionalized materials while preserving optimal conditioning of the bioactive surface.

Collaboration


Dive into the Katharina Lückerath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Knop

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Ken Herrmann

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge