Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharina Richter is active.

Publication


Featured researches published by Katharina Richter.


Molecular Pharmaceutics | 2015

Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

Shasha Rao; Katharina Richter; Tri-Hung Nguyen; Benjamin James Boyd; Christopher J. H. Porter; Angel Tan; Clive A. Prestidge

A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.


International Forum of Allergy & Rhinology | 2016

Mind "De GaPP": in vitro efficacy of deferiprone and gallium-protoporphyrin against Staphylococcus aureus biofilms.

Katharina Richter; Mahnaz Ramezanpour; Nicky Thomas; Clive A. Prestidge; Peter-John Wormald; Sarah Vreugde

Biofilms are clusters of bacteria embedded in a protective matrix that frequently cause failure of medical treatments and increase the risk of recurrent infections. In particular, Staphylococcus aureus biofilms are associated with a series of chronic and nosocomial infections that are increasingly resistant to antibiotics. This study proposes a novel intervention strategy targeting the essential iron metabolism for bacterial growth, survival and pathogenesis using the compounds deferiprone (Def) and gallium‐protoporphyrin (GaPP).


Antimicrobial Agents and Chemotherapy | 2017

A topical hydrogel with deferiprone and gallium-protoporphyrin targets bacterial iron metabolism and has antibiofilm activity

Katharina Richter; Nicky Thomas; Jolien Claeys; Jonathan T. McGuane; Clive A. Prestidge; Tom Coenye; Peter-John Wormald; Sarah Vreugde

ABSTRACT Many infectious diseases are associated with multidrug-resistant (MDR) bacteria residing in biofilms that require high antibiotic concentrations. While oral drug delivery is frequently ineffective, topical treatments have the potential to deliver higher drug concentrations to the infection site while reducing systemic side effects. This study determined the antibiofilm activity of a surgical wound gel loaded with the iron chelator deferiprone (Def) and the heme analogue gallium-protoporphyrin (GaPP), alone and in combination with ciprofloxacin. Activity against MDR Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter johnsonii biofilms was assessed in the colony biofilm and artificial wound model by enumeration of CFU and correlative light/electron microscopy. While Staphylococcus biofilms were equally susceptible to GaPP and Def-GaPP gels (log10 reduction of 3.8 and 3.7, respectively), the Def-GaPP combination was crucial for significant activity against P. aeruginosa biofilms (log10 reduction of 1.3 for GaPP and 3.3 for Def-GaPP). When Def-GaPP gel was combined with ciprofloxacin, the efficacy exceeded the activity of the individual compounds. Def-GaPP delivered in a surgical wound gel showed significant antibiofilm activity against different MDR strains and could enhance the gels wound-healing properties. Moreover, Def-GaPP indicated a potentiation of ciprofloxacin. This antibiofilm strategy has potential for clinical utilization as a therapy for topical biofilm-related infections.


ACS Applied Materials & Interfaces | 2017

Taking the Silver Bullet Colloidal Silver Particles for the Topical Treatment of Biofilm-Related Infections

Katharina Richter; Paula Facal; Nicky Thomas; Ilse Vandecandelaere; Mahnaz Ramezanpour; Clare Cooksley; Clive A. Prestidge; Tom Coenye; Peter-John Wormald; Sarah Vreugde

Biofilms are aggregates of bacteria residing in a self-assembled matrix, which protects these sessile cells against external stress, including antibiotic therapies. In light of emerging multidrug-resistant bacteria, alternative strategies to antibiotics are emerging. The present study evaluated the activity of colloidal silver nanoparticles (AgNPs) of different shapes against biofilms formed by Staphylococcus aureus (SA), methicillin-resistant SA (MRSA), and Pseudomonas aeruginosa (PA). Colloidal quasi-spherical, cubic, and star-shaped AgNPs were synthesized, and their cytotoxicity on macrophages (THP-1) and bronchial epithelial cells (Nuli-1) was analyzed by the lactate dehydrogenase assay. The antibiofilm activity was assessed in vitro by the resazurin assay and in an in vivo infection model in Caenorhabditis elegans. Cubic and star-shaped AgNPs induced cytotoxicity, while quasi-spherical AgNPs were not toxic. Quasi-spherical AgNPs showed substantial antibiofilm activity in vitro with 96% (±2%), 97% (±1%), and 98% (±1%) biofilm killing of SA, MRSA, and PA, respectively, while significantly reducing mortality of infected nematodes. The in vivo antibiofilm activity was linked to the accumulation of AgNPs in the intestinal tract of C. elegans as observed by 3D X-ray tomography. Quasi-spherical AgNPs were physically stable in suspension for over 6 months with no observed loss in antibiofilm activity. While toxicity and stability limited the utilization of cubic and star-shaped AgNPs, quasi-spherical AgNPs could be rapidly synthesized, were stable and nontoxic, and showed substantial in vitro and in vivo activity against clinically relevant biofilms. Quasi-spherical AgNPs hold potential as pharmacotherapy, for example, as topical treatment for biofilm-related infections.


Frontiers in Cellular and Infection Microbiology | 2017

Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants

Katharina Richter; Nicky Thomas; Guimin Zhang; Clive A. Prestidge; Tom Coenye; Peter-John Wormald; Sarah Vreugde

Small colony variants (SCVs) of bacteria like Staphylococcus aureus are characterized by a reduced colony size and are linked to increased antibiotic tolerance and resistance. Their altered expression of virulence factors, slow growing properties and their ability to form biofilms make the eradication of SCVs challenging. In the context of biofilm-related infectious diseases involving S. aureus SCVs, a therapy targeting bacterial iron metabolism was evaluated. The combination of the iron-chelator deferiprone (Def) and the heme-analog gallium-protoporphyrin (GaPP), in solution and incorporated in a surgical wound gel, was tested for activity against planktonic and sessile SCVs. To this end, the activity of Def-GaPP was assessed against planktonic S. aureus SCVs, as well as against in vitro and in vivo biofilms in the colony biofilm model, an artificial wound model and a Caenorhabditis elegans infection model. While Def alone failed to show substantial antibacterial activity, GaPP and the combination of Def-GaPP demonstrated concentration- and strain-dependent antibacterial properties. Specifically, the Def-GaPP combination significantly reduced the bacterial load in an artificial wound model and increased the survival of S. aureus SCV infected C. elegans. When Def-GaPP were combined with gentamicin or ciprofloxacin, the triple combinations exceeded the antibiofilm activity of the individual compounds in the colony biofilm model. In targeting bacterial iron metabolism, Def-GaPP showed significant activity against planktonic and sessile SCVs. Moreover, Def-GaPP could potentiate the activity of gentamicin and ciprofloxacin. Delivered in a wound healing gel, Def-GaPP showed promise as a new topical strategy against infections with S. aureus SCVs.


Scientific Reports | 2018

Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162

Cin Kong; Chin Fei Chee; Katharina Richter; Nicky Thomas; Noorsaadah Abd. Rahman; Sheila Nathan

Staphylococcus aureus is a major cause of nosocomial infections and secretes a diverse spectrum of virulence determinants as well as forms biofilm. The emergence of antibiotic-resistant S. aureus highlights the need for alternative forms of therapeutics other than conventional antibiotics. One route to meet this need is screening small molecule derivatives for potential anti-infective activity. Using a previously optimized C. elegans – S. aureus small molecule screen, we identified a benzimidazole derivative, UM-C162, which rescued nematodes from a S. aureus infection. UM-C162 prevented the formation of biofilm in a dose-dependent manner without interfering with bacterial viability. To examine the effect of UM-C162 on the expression of S. aureus virulence genes, a genome-wide transcriptome analysis was performed on UM-C162-treated pathogen. Our data indicated that the genes associated with biofilm formation, particularly those involved in bacterial attachment, were suppressed in UM-C162-treated bacteria. Additionally, a set of genes encoding vital S. aureus virulence factors were also down-regulated in the presence of UM-C162. Further biochemical analysis validated that UM-C162-mediated disruption of S. aureus hemolysins, proteases and clumping factors production. Collectively, our findings propose that UM-C162 is a promising compound that can be further developed as an anti-virulence agent to control S. aureus infections.


International Forum of Allergy & Rhinology | 2018

Bacteriophage effectively kills multidrug resistant Staphylococcus aureus clinical isolates from chronic rhinosinusitis patients: Phage kills multidrug resistant S. aureus

Guimin Zhang; Yin Zhao; Sathish Paramasivan; Katharina Richter; Sandra Morales; Peter-John Wormald; Sarah Vreugde

Bacteriophage (phage) therapy has been proposed as an alternative to antibiotics. Phages have been shown to kill antibiotic resistant Staphylococcus aureus strains; however, it is unknown whether stress‐induced antibiotic tolerance affects S. aureus susceptibility to phages. Our objective was to determine the effectiveness of 2 phages currently in clinical development, against antibiotic‐resistant and induced antibiotic‐tolerant clinical S. aureus isolates.


Frontiers in Microbiology | 2018

Topical Colloidal Silver for the Treatment of Recalcitrant Chronic Rhinosinusitis

Mian L. Ooi; Katharina Richter; C.L. Bennett; Luis Macias-Valle; Sarah Vreugde; Alkis J. Psaltis; Peter-John Wormald

Background: The management of recalcitrant chronic rhinosinusitis (CRS) is challenged by difficult-to-treat polymicrobial biofilms and multidrug resistant bacteria. This has led to the search for broad-spectrum non-antibiotic antimicrobial therapies. Colloidal silver (CS) has significant antibiofilm activity in vitro and in vivo against S. aureus, MRSA, and P. aeruginosa. However, due to the lack of scientific efficacy, it is only currently used as an alternative medicine. This is the first study looking at the safety and efficacy of CS in recalcitrant CRS. Methods: Patients were included when they had previously undergone endoscopic sinus surgery and presented with signs and symptoms of sinus infection with positive bacterial cultures. Twenty-two patients completed the study. Patients were allocated to 10–14 days of culture directed oral antibiotics with twice daily saline rinses (n = 11) or 10 days of twice daily 0.015 mg/mL CS rinses (n = 11). Safety observations included pre- and post-treatment serum silver levels, University of Pennsylvania Smell Identification Test (UPSIT) and adverse event (AE) reporting. Efficacy was assessed comparing microbiology results, Lund Kennedy Scores (LKS) and symptom scores using Visual Analog Scale (VAS) and Sino-Nasal Outcome Test (SNOT-22). Results: CS demonstrated good safety profile with no major adverse events, no changes in UPSIT and transient serum silver level changes in 4 patients. CS patients had 1/11 (9.09%) negative cultures, compared to 2/11 (18.18%) in the control group upon completion of the study. Whilst not statistically significant, both groups showed similar improvement in symptoms and endoscopic scores. Conclusion: This study concludes that twice daily CS (0.015 mg/mL) sinonasal rinses for 10 days is safe but not superior to culture-directed oral antibiotics. Further studies including more patients and looking at longer treatment or improving the tonicity of the solution for better tolerability should be explored.


Frontiers in Cellular and Infection Microbiology | 2017

Alloiococcus otitidis Forms Multispecies Biofilm with Haemophilus influenzae: Effects on Antibiotic Susceptibility and Growth in Adverse Conditions

Chun L. Chan; Katharina Richter; Peter-John Wormald; Alkis J. Psaltis; Sarah Vreugde

Otitis media with effusion (OME) is a biofilm driven disease and commonly accepted otopathogens, such as Haemophilus influenzae, Streptococcus pneumonia, and Moraxella catarrhalis, have been demonstrated to form polymicrobial biofilms within the middle ear cleft. However, Alloiococcus otitidis (A. otitidis), which is one of the most commonly found bacteria within middle ear aspirates of children with OME, has not been described to form biofilms. The aim of this study was to investigate whether A. otitidis can form biofilms and investigate the impact on antibiotic susceptibility and survivability in polymicrobial biofilms with H. influenzae in vitro. The ability of A. otitidis to form single-species and polymicrobial biofilms with H. influenzae was explored. Clinical and commercial strains of A. otitidis and H. influenzae were incubated in brain heart infusion with and without supplementation. Biofilm was imaged using confocal laser scanning microscopy and scanning electron microscopy. Quantification of biofilm biomass and viable bacterial number was assessed using crystal violet assays and viable cell counting in both optimal growth conditions and in adverse growth conditions (depleted media and sub-optimal growth temperature). Antimicrobial susceptibility and changes in antibiotic resistance of single-species and multi-species co-culture were assessed using a microdilution method to assess minimal bactericidal concentration and E-test for amoxicillin and ciprofloxacin. A. otitidis formed single-species and polymicrobial biofilms with H. influenzae. Additionally, whilst strain dependent, combinations of polymicrobial biofilms decreased antimicrobial susceptibility, albeit a small magnitude, in both planktonic and polymicrobial biofilms. Moreover, A. otitidis promoted H. influenzae survival by increasing biofilm production in depleted media and at suboptimal growth temperature. Our findings suggest that A. otitidis may play an indirect pathogenic role in otitis media by altering H. influenzae antibiotic susceptibility and enhancing growth under adverse conditions.


Scientific Reports | 2018

Comparative synaptosome imaging: a semi-quantitative method to obtain copy numbers for synaptic and neuronal proteins

Katharina Richter; Hanna Wildhagen; Martin S. Helm; Jan-Eike Ußling; Thomas Schikorski; Silvio O. Rizzoli

Protein copy numbers can be measured by biochemical methods ranging from quantitative Western Blotting to several mass spectrometry approaches. Such methods only provide average copy numbers, obtained over large cell numbers. However, copy number estimates for single cells or single organelles could be obtained by combining biochemical characterizations with an imaging approach. We performed this here for synaptic proteins, in a protocol that we termed comparative synaptosome imaging for semi-quantitative copy numbers (CosiQuant). In brief, in CosiQuant we immunostain in parallel biochemically-characterized synaptosomes, for which we have already determined the average protein copy numbers, and the samples of interest (such as neuronal cultures). We then derive the copy numbers in the samples of interest by comparing the immunofluorescence intensities. We measured the intensities not only in arbitrary fluorescence units, but also as numbers of antibodies per synaptosome, for a large number of targets. This implies that other groups can immediately apply CosiQuant for these targets, by simply estimating the number of antibodies per structure of interest. CosiQuant should therefore be a useful addition to the growing set of imaging techniques for synaptic neuroscience.

Collaboration


Dive into the Katharina Richter's collaboration.

Top Co-Authors

Avatar

Nicky Thomas

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clive A. Prestidge

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Thierry

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Mian L. Ooi

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Guimin Zhang

Tianjin First Center Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge