Katharina Röck
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katharina Röck.
Science Translational Medicine | 2013
Beate M. Lichtenberger; Peter Arne Gerber; Martin Holcmann; Bettina Alexandra Buhren; Nicole Amberg; Viktoria Smolle; Holger Schrumpf; E. Boelke; Parinaz Ansari; Colin R. MacKenzie; Andreas Wollenberg; Andreas Kislat; Jens W. Fischer; Katharina Röck; Jürgen Harder; Jens M. Schröder; Bernhard Homey; Maria Sibilia
Epidermal EGFR regulates skin inflammation and contributes to skin barrier function and host defense. Skin-Deep Search for the Effects of EGFR Inhibitors The goal of all medical interventions is to treat disease while minimizing the damage to healthy tissues in the body. This can be difficult to achieve for cancer drugs, however, especially when the effectiveness of a drug directly correlates with its side effects, as is the case for inhibitors of the epidermal growth factor receptor (EGFR). EGFR inhibitors are particularly known for causing a severe rash and skin damage, which sometimes forces patients to prematurely stop their treatments. Now, two papers by Mascia et al. and Lichtenberger et al. help clarify the mechanism of rash formation induced by EGFR inhibitors and uncover some of the skin components that contribute to this phenomenon. Both sets of authors used mouse models that lack EGFR only in the skin to replicate the pattern of injury seen in patients treated with EGFR inhibitors. They characterized the changes in chemokine expression in the skin of treated patients and study animals and examined the effects of EGFR inhibition on skin defenses and bacteria. They also investigated the effects of crossing mice that lack EGFR in the skin with mice deficient in different immune pathways and immune cell types to determine which ones are necessary for the rash phenotype. The findings of these two studies suggest that EGFR signaling is important for normal skin barrier function and antimicrobial defense, and that skin macrophages may contribute to the adverse effects of EGFR inhibitors. Additional work will be necessary to further expand our understanding of EGFR inhibitor toxicity and to continue the search for ways to prevent this disruptive side effect. The current studies provide mechanistic insights that should help guide further investigation in this area. The epidermal growth factor receptor (EGFR) plays an important role in tissue homeostasis and tumor progression. However, cancer patients treated with EGFR inhibitors (EGFRIs) frequently develop acneiform skin toxicities, which are a strong predictor of a patient’s treatment response. We show that the early inflammatory infiltrate of the skin rash induced by EGFRI is dominated by dendritic cells, macrophages, granulocytes, mast cells, and T cells. EGFRIs induce the expression of chemokines (CCL2, CCL5, CCL27, and CXCL14) in epidermal keratinocytes and impair the production of antimicrobial peptides and skin barrier proteins. Correspondingly, EGFRI-treated keratinocytes facilitate lymphocyte recruitment but show a considerably reduced cytotoxic activity against Staphylococcus aureus. Mice lacking epidermal EGFR (EGFRΔep) show a similar phenotype, which is accompanied by chemokine-driven skin inflammation, hair follicle degeneration, decreased host defense, and deficient skin barrier function, as well as early lethality. Skin toxicities were not ameliorated in a Rag2-, MyD88-, and CCL2-deficient background or in mice lacking epidermal Langerhans cells. The skin phenotype was also not rescued in a hairless (hr/hr) background, demonstrating that skin inflammation is not induced by hair follicle degeneration. Treatment with mast cell inhibitors reduced the immigration of T cells, suggesting that mast cells play a role in the EGFRI-mediated skin pathology. Our findings demonstrate that EGFR signaling in keratinocytes regulates key factors involved in skin inflammation, barrier function, and innate host defense, providing insights into the mechanisms underlying EGFRI-induced skin pathologies.
Circulation | 2010
Nadine Nagy; Till Freudenberger; Ariane Melchior-Becker; Katharina Röck; Michael ter Braak; Holger Jastrow; Martina Kinzig; Susann Lucke; Tatsiana Suvorava; Georg Kojda; Artur A. Weber; Fritz Sörgel; Bodo Levkau; Süleyman Ergün; Jens W. Fischer
Background— Hyaluronan is thought to mediate neointimal hyperplasia but also vasoprotection as an integral component of the endothelial glycocalyx. The present study addressed for the first time the effects of long-term pharmacological inhibition of hyaluronan synthesis on vascular function and atherosclerosis. Methods and Results— Four-week-old apolipoprotein E–deficient mice on a Western diet received orally an inhibitor of hyaluronan synthesis, 4-methylumbelliferone (4-MU; 10 mg/g body wt), resulting in 600 nmol/L 4-MU in plasma. As a result, aortic plaque burden was markedly increased at 25 weeks. Furthermore, acetylcholine-dependent relaxation of aortic rings was decreased and mean arterial blood pressure was increased in response to 4-MU. However, hydralazine blunted the hypertensive effect of 4-MU without inhibiting the proatherosclerotic effect. A photothrombosis model revealed a prothrombotic state that was not due to increased platelet activation or increased thrombin activation as monitored by CD62P expression and the endogenous thrombin potential. Importantly, increased recruitment of macrophages to vascular lesions was detected after 2 and 21 weeks of 4-MU treatment by immunohistochemistry, by intravital microscopy, and in a peritonitis model. As a potential underlying mechanism, severe damage of the endothelial glycocalyx after 2 and 21 weeks of treatment with 4-MU was detected by electron microscopy of the innominate artery and myocardial capillaries. Furthermore, 600 nmol/L 4-MU inhibited hyaluronan synthesis in cultured endothelial cells. Conclusions— The data suggest that systemic inhibition of hyaluronan synthesis by 4-MU interferes with the protective function of the endothelial glycocalyx, thereby facilitating leukocyte adhesion, subsequent inflammation, and progression of atherosclerosis.Background— Hyaluronan is thought to mediate neointimal hyperplasia but also vasoprotection as an integral component of the endothelial glycocalyx. The present study addressed for the first time the effects of long-term pharmacological inhibition of hyaluronan synthesis on vascular function and atherosclerosis. Methods and Results— Four-week-old apolipoprotein E–deficient mice on a Western diet received orally an inhibitor of hyaluronan synthesis, 4-methylumbelliferone (4-MU; 10 mg/g body wt), resulting in 600 nmol/L 4-MU in plasma. As a result, aortic plaque burden was markedly increased at 25 weeks. Furthermore, acetylcholine-dependent relaxation of aortic rings was decreased and mean arterial blood pressure was increased in response to 4-MU. However, hydralazine blunted the hypertensive effect of 4-MU without inhibiting the proatherosclerotic effect. A photothrombosis model revealed a prothrombotic state that was not due to increased platelet activation or increased thrombin activation as monitored by CD62P expression and the endogenous thrombin potential. Importantly, increased recruitment of macrophages to vascular lesions was detected after 2 and 21 weeks of 4-MU treatment by immunohistochemistry, by intravital microscopy, and in a peritonitis model. As a potential underlying mechanism, severe damage of the endothelial glycocalyx after 2 and 21 weeks of treatment with 4-MU was detected by electron microscopy of the innominate artery and myocardial capillaries. Furthermore, 600 nmol/L 4-MU inhibited hyaluronan synthesis in cultured endothelial cells. Conclusions— The data suggest that systemic inhibition of hyaluronan synthesis by 4-MU interferes with the protective function of the endothelial glycocalyx, thereby facilitating leukocyte adhesion, subsequent inflammation, and progression of atherosclerosis. # Clinical Perspective {#article-title-39}
Journal of Biological Chemistry | 2011
Katharina Röck; Maria Grandoch; Marc Majora; Jean Krutmann; Jens W. Fischer
UVB irradiation causes characteristic features of skin aging including remodeling of the dermal extracellular matrix. A key feature during this process is the up-regulation of matrix metalloproteinases and cleavage of collagen. Hyaluronic acid (HA), a major component of the dermal matrix, decreases after chronic UVB exposure. However, the factors that govern the decline of HA synthesis during the course of actinic aging are largely unknown. The aim of the present study was to explore whether collagen degradation causes inhibition of HA synthesis in human skin fibroblasts. After treatment of fibroblasts with collagen fragments (CF) in vitro, resolution of the actin cytoskeleton and inhibition of HA secretion occurred because of specific down-regulation of hyaluronan synthase 2 (HAS2) expression. The αvβ3-agonist, RGDS, latrunculin A, and an inhibitor of Rho-activated kinase inhibited HAS2 expression. Conversely, blocking antibodies to αvβ3 abolished the down-regulation of HAS2 and the cytoskeletal effects. Furthermore, inhibition of cofilin phosphorylation in response to CF was prevented by αvβ3-blocking antibodies. The key role of ERK signaling was shown by reduced nuclear accumulation of phosphoERK and of ELK-1 phosphorylation in response to CF. In addition, the ERK inhibitor PD98059 reduced HAS2 expression. Also, UVB irradiation of fibroblasts caused down-regulation of HAS2, which was sensitive to matrix metalloproteinase inhibitors and to αvβ3-blocking antibodies. In conclusion, these data suggest that CF activate αvβ3-integrins and in turn inhibit Rho kinase (ROCK) signaling and nuclear translocation of phosphoERK, resulting in reduced HAS2 expression. Therefore, a novel mechanism is presented how proteolytic collagen cleavage may inhibit HA synthesis in dermal fibroblasts during extrinsic skin aging.
Journal of Biological Chemistry | 2012
Katharina Röck; Michael Meusch; Nikola Fuchs; Julia Tigges; Petra Zipper; Ellen Fritsche; Jean Krutmann; Bernhard Homey; J. Reifenberger; Jens W. Fischer
Background: Skin aging involves UVB-induced degeneration of the dermal extracellular matrix. Results: Estrogen induces epidermal growth factor expression in keratinocytes thereby stimulating hyaluronan synthase 3 and versican expression in dermal fibroblasts of UVB-irradiated skin. Conclusion: Paracrine release of epidermal growth factor in response to estrogen maintains hyaluronan and versican-rich extracellular matrix. Significance: Estrogen prevents specific aging responses in the hyaluronan matrix of photoaged skin. Hyaluronan (HA) and versican are key components of the dermis and are responsive to ultraviolet (UV)B-induced remodeling. The aim of this study was to explore the molecular mechanisms mediating the effects of estrogen (E2) on HA-rich extracellular matrix during photoaging. Hairless skh-1 mice were irradiated with UVB (three times, 1 minimal erythema dose (80 mJ/cm2), weekly) for 10 weeks, and endogenous sex hormone production was abrogated by ovariectomy. Subcutaneous substitution of E2 by means of controlled-release pellets caused a strong increase in the dermal HA content in both irradiated and nonirradiated skin. The increase in dermal HA correlated with induction of HA synthase HAS3 by E2. Expression of splice variant 2 of the HA-binding proteoglycan versican was also increased by E2. In search of candidate mediators of these effects, it was found that E2 strongly induced the expression of epidermal growth factor (EGF) in UVB-irradiated epidermis in vivo and in keratinocytes in vitro. EGF in turn up-regulated the expression of HAS3 and versican V2 in dermal fibroblasts. HAS3 knockdown by shRNA caused inhibition of fibroblast proliferation. Furthermore, HAS3 and versican V2 induction by E2 correlated positively with proliferation in vivo. In addition, the accumulation of inflammatory macrophages, expression of inducible cyclooxygenase 2, as well as proinflammatory monocyte chemotactic protein 1 were decreased in response to E2 in the dermis. Collectively, these data suggest that E2 treatment increases the amount of dermal HA and versican V2 via paracrine release of EGF, which may be implicated in the pro-proliferative and anti-inflammatory effects of E2 during photoaging.
PLOS ONE | 2013
Christian Niedworok; Katharina Röck; Inga Kretschmer; Till Freudenberger; Nadine Nagy; Tibor Szarvas; Frank vom Dorp; Henning Reis; H. Rübben; Jens W. Fischer
Background Urothelial bladder cancer is the ninth most common cancer. Despite surgical and chemotherapeutic treatment the prognosis is still poor once bladder cancer progresses to a muscle-invasive state. Discovery of new diagnostic markers and pathophysiologic effectors might help to contribute to novel diagnostic and therapeutic options. The extracellular matrix microenvironment shaped by the extracellular matrix critically affects tumor cell and stroma cell functions. Therefore, aim of the present study was to assess the possible implication of the small leucine-rich proteoglycan biglycan in progression of human urothelial bladder cancer. Methods and Results For this purpose tumor biopsies of 76 bladder cancer patients with different tumor stages (pTa, pT1-T4) were investigated with respect to biglycan expression and correlated with a long-term (10 years) clinical follow-up. Interestingly, higher biglycan mRNA expression was associated with higher tumor stages and muscle invasiveness. In vitro knock-down of endogenous biglycan in human urothelial carcinoma cells (J82 cells) increased proliferation, whereas addition of recombinant biglycan and overexpression of biglycan inhibited tumor cell proliferation. In line with this growth-inhibitory effect of biglycan, transplantation of J82 cells after knock-down of biglycan resulted in significantly increased growth of subcutaneous xenograft tumors in nude mice in vivo. Furthermore, treatment with two anti-proliferative, multi-receptor tyrosine kinase inhibitors—sunitinib and sorafenib—strongly upregulated biglycan expression. Collectively, the experimental data suggest that high biglycan expression is associated with reduced tumor cell proliferation. In accordance, Kaplan-Meier analysis revealed higher 10-year survival in patients with high biglycan mRNA expression in tumor biopsies. Conclusion In conclusion, the present data suggest that biglycan is an endogenous inhibitor of bladder cancer cell proliferation that is upregulated in response to anti-proliferative tyrosine kinase inhibitors. In addition, high biglycan expression is associated with favorable prognosis.
Journal of Investigative Dermatology | 2015
Katharina Röck; Julia Tigges; Steffen Sass; Alexandra Schütze; Ana-Maria Florea; Anke C. Fender; Florian J. Theis; Jean Krutmann; Fritz Boege; Ellen Fritsche; Guido Reifenberger; Jens W. Fischer
Even though aging and cellular senescence appear to be linked, the biological mechanisms interconnecting these two processes remain to be unravelled. Therefore, microRNA (miRNA/miR) profiles were analyzed ex vivo by means of gene array in fibroblasts isolated from young and old human donors. Expression of several miRNAs was positively correlated with donor age. Among them, miR-23a-3p was shown to target hyaluronan synthase 2 (HAS2). HA is a polysaccharide of the extracellular matrix that critically regulates the phenotype of fibroblasts. Indeed, both aged and senescent fibroblasts showed increased miR-23a-3p expression and secreted significantly lower amounts of HA compared with young and non-senescent fibroblasts. Ectopic overexpression of miR-23a-3p in non-senescent fibroblasts led to decreased HAS2-mediated HA synthesis, upregulation of senescence-associated markers, and decreased proliferation. In addition, siRNA-mediated downregulation of HAS2 and pharmacological inhibition of HA synthesis by 4-methylumbelliferone mimicked the effects of miR-23a-3p. In vivo, miR-23a-3p was upregulated and HAS2 was downregulated in the skin of old mice compared with young mice. Inhibition of HA synthesis by 4-methylumbelliferone in mice reduced dermal hydration and viscoelasticity, thereby mimicking an aged skin phenotype. Taken together, these findings appear to link miR-23a-3p and the HA microenvironment as effector mechanisms in both dermal aging and senescence.
Circulation Research | 2016
Wen Chen; Annett Spitzl; Denise Mathes; Viacheslav O. Nikolaev; Franziska Werner; Johannes Weirather; Katarina Spiranec; Katharina Röck; Jens W. Fischer; Ulrike Kämmerer; David Stegner; Hideo Baba; Ulrich Hofmann; Stefan Frantz; Michaela Kuhn
RATIONALE In patients after acute myocardial infarction (AMI), the initial extent of necrosis and inflammation determine clinical outcome. One early event in AMI is the increased cardiac expression of atrial natriuretic peptide (NP) and B-type NP, with their plasma levels correlating with severity of ischemia. It was shown that NPs, via their cGMP-forming guanylyl cyclase-A (GC-A) receptor and cGMP-dependent kinase I (cGKI), strengthen systemic endothelial barrier properties in acute inflammation. OBJECTIVE We studied whether endothelial actions of local NPs modulate myocardial injury and early inflammation after AMI. METHODS AND RESULTS Necrosis and inflammation after experimental AMI were compared between control mice and littermates with endothelial-restricted inactivation of GC-A (knockout mice with endothelial GC-A deletion) or cGKI (knockout mice with endothelial cGKI deletion). Unexpectedly, myocardial infarct size and neutrophil infiltration/activity 2 days after AMI were attenuated in knockout mice with endothelial GC-A deletion and unaltered in knockout mice with endothelial cGKI deletion. Molecular studies revealed that hypoxia and tumor necrosis factor-α, conditions accompanying AMI, reduce the endothelial expression of cGKI and enhance cGMP-stimulated phosphodiesterase 2A (PDE2A) levels. Real-time cAMP measurements in endothelial microdomains using a novel fluorescence resonance energy transfer biosensor revealed that PDE2 mediates NP/cGMP-driven decreases of submembrane cAMP levels. Finally, intravital microscopy studies of the mouse cremaster microcirculation showed that tumor necrosis factor-α-induced endothelial NP/GC-A/cGMP/PDE2 signaling impairs endothelial barrier functions. CONCLUSIONS Hypoxia and cytokines, such as tumor necrosis factor-α, modify the endothelial postreceptor signaling pathways of NPs, with downregulation of cGKI, induction of PDE2A, and altered cGMP/cAMP cross talk. Increased expression of PDE2 can mediate hyperpermeability effects of paracrine endothelial NP/GC-A/cGMP signaling and facilitate neutrophil extravasation during the early phase after MI.
PLOS ONE | 2013
Christian Niedworok; Inga Kretschmer; Katharina Röck; Frank vom Dorp; Tibor Szarvas; J. Heß; Till Freudenberger; Ariane Melchior-Becker; H. Rübben; Jens W. Fischer
Hyaluronan (HA) is a carbohydrate of the extracellular matrix with tumor promoting effects in a variety of cancers. The present study addressed the role of HA matrix for progression and prognosis of human bladder cancer by studying the expression and function of HA-related genes. Methods Tissue samples of 120 patients with different stages of transitional cell bladder cancer, who underwent surgical treatment for bladder cancer at the University Hospital of Essen were analysed. mRNA-expression levels of HA synthases (HAS1-3) and HA-receptors (RHAMM and CD44) were evaluated by real time RT-PCR in comparison to healthy bladder tissue as control. In uni- and multivariate cox proportional hazard survival regression analysis, the impact of the gene expression levels on survival was assessed. In vitro knock-down of RHAMM, CD44 and HAS isoenzymes was achieved by siRNA and lentiviral shRNA in J82 bladder cancer cells. Transfected cells were analysed in vitro with regard to proliferation, cell cycle and apoptosis. J82 cells after knock-down of RHAMM were xenografted into male nu/nu athymic mice to monitor tumor progression in vivo. Results In invasive tumor stages RHAMM-, HAS1 and HAS2 mRNA-expression levels were elevated whereas HAS3v1 was reduced as compared to non-invasive tumors. Subsequently, Kaplan-Meier analysis revealed reduced bladder cancer specific survival in patients with high RHAMM mRNA and low HAS3v1 expression. Elevated RHAMM in invasive tumors was confirmed by RHAMM immunohistochemistry. Furthermore, multivariate analysis revealed that only RHAMM expression was associated with poor prognosis independent from other survival factors (HR=2.389, 95% CI 1.227-4.651, p=0.01). Lentiviral RHAMM knock-down revealed reduced J82 cell proliferation in vitro and reduced xenograft tumor growth in vivo. Conclusion The data suggest that RHAMM plays a crucial role in mediating progression of muscle-invasive bladder cancer and recommends RHAMM for further evaluation as a prognostic marker or therapeutic target in bladder cancer therapy.
Dermatology | 2010
Katharina Röck; Kerstin Fischer; Jens W. Fischer
Background: Over the past decade injectable hyaluronan (HA) formulations have been widely used to decrease the visibility of skin aging. However, little basic research has been performed to address their effect on dermal skin fibroblasts. Objective: The aim of the present study was to investigate whether human skin fibroblasts are affected by exogenous non-cross-linked HA with respect to proliferation, migration and extracellular matrix composition. Methods: The effect of a non-cross-linked HA on proliferation, migration and gene expression of human dermal fibroblasts was determined. Furthermore, affinity histochemistry of pericellular HA was performed. Results: Proliferation was significantly stimulated by HA whereas migration was not affected. Importantly, exogenous HA was incorporated into fine HA filaments of the pericellular fibroblast matrix. Conclusion: This is the first evidence that a HA formulation used in humans for cosmetic reasons stimulates fibroblast proliferation and is utilized to assemble a supramolecular pericellular structure.
Oncotarget | 2016
Tobias M. Gorges; Sabine Riethdorf; Oliver von Ahsen; Paulina Nastały; Katharina Röck; Marcel Boede; Sven Peine; Andra Kuske; Elke Schmid; Christoph Kneip; Frank König; Marion Rudolph; Klaus Pantel
The prostate specific membrane antigen (PSMA) is the only clinically validated marker for therapeutic decisions in prostate cancer (PC). Characterization of circulating tumor cells (CTCs) obtained from the peripheral blood of PC patients might provide an alternative to tissue biopsies called “liquid biopsy”. The aim of this study was to develop a reliable assay for the determination of PSMA on CTCs. PSMA expression was analyzed on tissue samples (cohort one, n = 75) and CTCs from metastatic PC patients (cohort two, n = 29). Specific signals for the expression of PSMA could be seen for different prostate cancer cell line cells (PC3, LaPC4, 22Rv1, and LNCaP) by Western blot, immunohistochemistry (IHC), immunocytochemistry (ICC), and FACS. PSMA expression was found to be significantly increased in patients with higher Gleason grade (p = 0.0011) and metastases in lymph nodes (p = 0.0000085) or bone (p = 0.0020) (cohort one). In cohort two, CTCs were detectable in 20 out of 29 samples (69 %, range from 1 - 1000 cells). Twelve out of 20 CTC-positive patients showed PSMA-positive CTCs (67 %, score 1+ to 3+). We found intra-patient heterogeneity regarding the PSMA status between CTCs and the corresponding primary tumors. The results of our study could help to address the question whether treatment decisions based on CTC PSMA profiling will lead to a measurable benefit in clinical outcome for prostate cancer patients in the near future.