Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharine H. Fraser is active.

Publication


Featured researches published by Katharine H. Fraser.


Medical Engineering & Physics | 2011

The use of computational fluid dynamics in the development of ventricular assist devices

Katharine H. Fraser; M. Ertan Taskin; Bartley P. Griffith; Zhongjun J. Wu

Progress in the field of prosthetic cardiovascular devices has significantly contributed to the rapid advancements in cardiac therapy during the last four decades. The concept of mechanical circulatory assistance was established with the first successful clinical use of heart-lung machines for cardiopulmonary bypass. Since then a variety of devices have been developed to replace or assist diseased components of the cardiovascular system. Ventricular assist devices (VADs) are basically mechanical pumps designed to augment or replace the function of one or more chambers of the failing heart. Computational Fluid Dynamics (CFD) is an attractive tool in the development process of VADs, allowing numerous different designs to be characterized for their functional performance virtually, for a wide range of operating conditions, without the physical device being fabricated. However, VADs operate in a flow regime which is traditionally difficult to simulate; the transitional region at the boundary of laminar and turbulent flow. Hence different methods have been used and the best approach is debatable. In addition to these fundamental fluid dynamic issues, blood consists of biological cells. Device-induced biological complications are a serious consequence of VAD use. The complications include blood damage (haemolysis, blood cell activation), thrombosis and emboli. Patients are required to take anticoagulation medication constantly which may cause bleeding. Despite many efforts blood damage models have still not been implemented satisfactorily into numerical analysis of VADs, which severely undermines the full potential of CFD. This paper reviews the current state of the art CFD for analysis of blood pumps, including a practical critical review of the studies to date, which should help device designers choose the most appropriate methods; a summary of blood damage models and the difficulties in implementing them into CFD; and current gaps in knowledge and areas for future work.


Journal of Biomechanical Engineering-transactions of The Asme | 2012

A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index

Katharine H. Fraser; Tao Zhang; M. Ertan Taskin; Bartley P. Griffith; Zhongjun J. Wu

Ventricular assist devices (VADs) have already helped many patients with heart failure but have the potential to assist more patients if current problems with blood damage (hemolysis, platelet activation, thrombosis and emboli, and destruction of the von Willebrand factor (vWf)) can be eliminated. A step towards this goal is better understanding of the relationships between shear stress, exposure time, and blood damage and, from there, the development of numerical models for the different types of blood damage to enable the design of improved VADs. In this study, computational fluid dynamics (CFD) was used to calculate the hemodynamics in three clinical VADs and two investigational VADs and the shear stress, residence time, and hemolysis were investigated. A new scalar transport model for hemolysis was developed. The results were compared with in vitro measurements of the pressure head in each VAD and the hemolysis index in two VADs. A comparative analysis of the blood damage related fluid dynamic parameters and hemolysis index was performed among the VADs. Compared to the centrifugal VADs, the axial VADs had: higher mean scalar shear stress (sss); a wider range of sss, with larger maxima and larger percentage volumes at both low and high sss; and longer residence times at very high sss. The hemolysis predictions were in agreement with the experiments and showed that the axial VADs had a higher hemolysis index. The increased hemolysis in axial VADs compared to centrifugal VADs is a direct result of their higher shear stresses and longer residence times. Since platelet activation and destruction of the vWf also require high shear stresses, the flow conditions inside axial VADs are likely to result in more of these types of blood damage compared with centrifugal VADs.


Asaio Journal | 2012

Evaluation of Eulerian and Lagrangian models for hemolysis estimation

M. Ertan Taskin; Katharine H. Fraser; Tao Zhang; Changfu Wu; Bartley P. Griffith; Zhongjun J. Wu

Hemolysis caused by flow-induced mechanical damage to red blood cells is still a problem in medical devices such as ventricular assist devices (VADs), artificial lungs, and mechanical heart valves. A number of different models have been proposed by different research groups for calculating the hemolysis, and of these, the power law–based models (HI(%)=Ct&agr;&tgr;&bgr;) have proved the most popular because of their ease of use and applicability to a wide range of devices. However, within this power law category of models there are a number of different implementations. The aim of this work was to evaluate different power law–based models by calculating hemolysis in a specifically designed shearing device and a clinical VAD, and comparing the estimated results with experimental measurements of the hemolysis in these two devices. Both the Eulerian scalar transport and all the Lagrangian models had fairly large percentage of errors compared with the experiments (minimum Eulerian 91% and minimum Lagrangian 57%) showing they could not accurately predict the magnitude of the hemolysis. However, the Eulerian approach had large correlation coefficients (>0.99) showing that this method can predict relative hemolysis, which would be useful in comparative analysis, for example, for ranking different devices or for design optimization studies.


Artificial Organs | 2010

Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support

M. Ertan Taskin; Katharine H. Fraser; Tao Zhang; Barry N. Gellman; Andi Fleischli; Kurt A. Dasse; Bartley P. Griffith; Zhongjun J. Wu

The Levitronix UltraMag blood pump is a next generation, magnetically suspended centrifugal pump and is designed to provide circulatory support for pediatric and adult patients. The aim of this study is to investigate the hemodynamic and hemolytic characteristics of this pump using the computational fluid dynamics (CFD) approach. The computational domain for CFD analysis was constructed from the three-dimensional geometry (3D) of the UltraMag blood pump and meshed into 3D tetrahedral/hybrid elements. The governing equations of fluid flow were computationally solved to obtain a blood flow through the blood pump. Further, hemolytic blood damage was calculated by solving a scalar transport equation where the scalar variable and the source term were obtained utilizing an empirical power-law correlation between the fluid dynamic variables and hemolysis. To obtain mesh independent flow solution, a comparative examination of vector fields, hydrodynamic performance, and hemolysis predictions were carried out. Different sizes of tetrahedral and tetrahedral/hexahedral mixed hybrid models were considered. The mesh independent solutions were obtained by a hybrid model. Laminar and SST κ-ω turbulence flow models were used for different operating conditions. In order to pinpoint the most significant hemolytic region, the flow field analysis was coupled to the hemolysis predictions. In summary, computational characterization of the device was satisfactorily carried out within the targeted operating conditions of the device, and it was observed that the UltraMag blood pump can be safely operated for its intended use to create a circulatory support for both pediatric and adult-sized patients.


Asaio Journal | 2010

Computational Fluid Dynamics Analysis of Thrombosis Potential in Left Ventricular Assist Device Drainage Cannulae

Katharine H. Fraser; Tao Zhang; M. Ertan Taskin; Bartley P. Griffith; Zhongjun J. Wu

Cannulation is necessary when blood is removed from the body, for example in hemodialysis, cardiopulmonary bypass, blood oxygenators, and ventricular assist devices. Artificial blood contacting surfaces are prone to thrombosis, especially in the presence of stagnant or recirculating flow. In this work, computational fluid dynamics was used to investigate the blood flow fields in three clinically available cannulae (Medtronic DLP 12, 16, and 24 F), used as drainage for pediatric circulatory support and to calculate parameters that may be indicative of thrombosis potential. The results show that using the 24 F cannula below flow rates of about 0.75 L/min produces hemodynamic conditions, which may increase the risk of blood clotting within the cannula. No reasons are indicated for not using the 12 or 16 F cannulae with flow rates between 0.25 and 3.0 L/min.


Ultrasound in Medicine and Biology | 2008

A Method to Estimate Wall Shear Rate with a Clinical Ultrasound Scanner

James R. Blake; S. Meagher; Katharine H. Fraser; William J. Easson; Peter R. Hoskins

A simple technique to estimate the wall shear rate in healthy arteries using a clinical ultrasound scanner has been developed. This method uses the theory of fully developed oscillatory flow together with a spectral Doppler trace and an estimate of mean arterial diameter. A method using color flow imaging was compared with the spectral Doppler method in vascular phantoms and found to have errors that were on average 35% greater. Differences from the theoretic value for the time averaged wall shear rate using the spectral Doppler method varied by artery: brachial -9 (1) %; carotid -7 (1) %; femoral -22 (4) %; and fetal aorta -17 (10) %. Test measurements obtained from one healthy volunteer demonstrated the feasibility of the technique in vivo.


Ultrasound in Medicine and Biology | 2013

Ultrasound imaging velocimetry: Effect of beam sweeping on velocity estimation

Bin Zhou; Katharine H. Fraser; Christian Poelma; Jean Martial Mari; Robert J. Eckersley; Peter D. Weinberg; Meng-Xing Tang

As an emerging flow-mapping tool that can penetrate deep into optically opaque media such as human tissue, ultrasound imaging velocimetry has promise in various clinical applications. Previous studies have shown that errors occur in velocity estimation, but the causes have not been well characterised. In this study, the error in velocity estimation resulting from ultrasound beam sweeping in image acquisition is quantitatively investigated. The effects on velocity estimation of the speed and direction of beam sweeping relative to those of the flow are studied through simulation and experiment. The results indicate that a relative error in velocity estimation of up to 20% can be expected. Correction methods to reduce the errors under steady flow conditions are proposed and evaluated. Errors in flow estimation under unsteady flow are discussed.


Artificial Organs | 2012

Computational model‐based design of a wearable artificial pump‐lung for cardiopulmonary/respiratory support

Zhongjun J. Wu; M. Ertan Taskin; Tao Zhang; Katharine H. Fraser; Bartley P. Griffith

Mechanical ventilation and extracorporeal membrane oxygenation are the only immediate options available for patients with respiratory failure. However, these options present significant shortcomings. To address this unmet need for respiratory support, innovative respiratory assist devices are being developed. In this study, we present the computational model-based design, and analysis of functional characteristics and hemocompatibility performance, of an innovative wearable artificial pump-lung (APL) for ambulatory respiratory support. Computer-aided design and computational fluid dynamics (CFD)-based modeling were utilized to generate the geometrical model and to acquire the fluid flow field, gas transfer, and blood damage potential. With the knowledge of flow field, gas transfer, and blood damage potential through the whole device, design parameters were adjusted to achieve the desired specifications based on the concept of virtual prototyping using the computational modeling in conjunction with consideration of the constraints on fabrication processes and materials. Based on the results of the CFD design and analysis, the physical model of the wearable APL was fabricated. Computationally predicted hydrodynamic pumping function, gas transfer, and blood damage potential were compared with experimental data from in vitro evaluation of the wearable APL. The hydrodynamic performance, oxygen transfer, and blood damage potential predicted with computational modeling, along with the in vitro experimental data, indicated that this APL meets the design specifications for respiratory support with excellent biocompatibility at the targeted operating condition.


Artificial Organs | 2013

Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device.

Jiafeng Zhang; Pei Zhang; Katharine H. Fraser; Bartley P. Griffith; Zhongjun J. Wu

With the recent advances in computer technology, computational fluid dynamics (CFDs) has become an important tool to design and improve blood-contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST [Menters Shear Stress Transport], and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, the CentriMag centrifugal blood pump. In parallel, a transparent replica of the CentriMag pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε renormalization group theory models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than the laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended.


Measurement Science and Technology | 2013

Enhancing the dynamic range of ultrasound imaging velocimetry using interleaved imaging

Christian Poelma; Katharine H. Fraser

In recent years, non-invasive velocity field measurement based on correlation of ultrasound images has been introduced as a promising technique for fundamental research into disease processes, as well as a diagnostic tool. A major drawback of the method is the relatively limited dynamic range when conventional echography equipment is used. We present a method by which the restriction of the maximum flow rates can be relaxed. The method uses conventional hardware, but a novel read-out sequence that interleaves subsequent images. By varying the off-set between two interleaved images, we re-introduce the inter-frame time as a parameter that can be optimized for velocimetry. The novel approach is demonstrated with data from an in vitro study of a reference flow.

Collaboration


Dive into the Katharine H. Fraser's collaboration.

Top Co-Authors

Avatar

Zhongjun J. Wu

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Zhang

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Poelma

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge