Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharine M. Dibb is active.

Publication


Featured researches published by Katharine M. Dibb.


Circulation-heart Failure | 2009

Characterization of an Extensive Transverse Tubular Network in Sheep Atrial Myocytes and its Depletion in Heart Failure

Katharine M. Dibb; Jessica D. Clarke; Mark A. Richards; Helen K. Graham; D. A. Eisner; Andrew W. Trafford

Background—In ventricular myocytes, the majority of structures that couple excitation to the systolic rise of Ca2+ are located at the transverse tubular (t-tubule) membrane. In the failing ventricle, disorganization of t-tubules disrupts excitation contraction coupling. The t-tubule membrane is virtually absent in the atria of small mammals resulting in spatiotemporally distinct profiles of intracellular Ca2+ release on stimulation in atrial and ventricular cells. The aims of this study were to determine (i) whether atrial myocytes from a large mammal (sheep) possess t-tubules, (ii) whether these are functionally important, and (iii) whether they are disrupted in heart failure. Methods and Results—Sheep left atrial myocytes were stained with di-4-ANEPPS. Nearly all control cells had an extensive t-tubule network resulting in each voxel in the cell being nearer to a membrane (sarcolemma or t-tubule) than would otherwise be the case. T-tubules decrease the distance of 50% of voxels from a membrane from 3.35±0.15 to 0.88±0.04 &mgr;m. During depolarization, intracellular Ca2+ rises simultaneously at the cell periphery and center. In heart failure induced by rapid ventricular pacing, there was an almost complete loss of atrial t-tubules. The distance of 50% of voxels from a membrane increased to 2.04±0.08 &mgr;m, and there was a loss of early Ca2+ release from the cell center. Conclusion—Sheep atrial myocytes possess a substantial t-tubule network that synchronizes the systolic Ca2+ transient. In heart failure, this network is markedly disrupted. This may play an important role in changes of atrial function in heart failure.


Journal of Molecular and Cellular Cardiology | 2009

Differences in intracellular calcium homeostasis between atrial and ventricular myocytes

A.P. Walden; Katharine M. Dibb; Andrew W. Trafford

The role that Ca(2+) plays in ventricular excitation contraction coupling is well defined and much is known about the marked differences in the spatiotemporal properties of the systolic Ca(2+) transient between atrial and ventricular myocytes. However, to date there has been no systematic appraisal of the Ca(2+) homeostatic mechanisms employed by atrial cells and how these compare to the ventricle. In the present study we sought to determine the fractional contributions made to the systolic Ca(2+) transient and the decay of [Ca(2+)](i) by the sarcoplasmic reticulum and sarcolemmal mechanisms. Experiments were performed on single myocytes isolated from the atria and ventricles of the rat. Intracellular Ca(2+) concentration, membrane currents, SR Ca(2+) content and cellular Ca(2+) buffering capacity were measured at 23 degrees C. Atrial cells had smaller systolic Ca(2+) transients (251+/-39 vs. 376+/-41 nmol x L(-1)) that decayed more rapidly (7.4+/-0.6 vs. 5.45+/-0.3 s(-1)). This was due primarily to an increased rate of SR mediated Ca(2+) uptake (k(SR), 6.88+/-0.6 vs. 4.57+/-0.3 s(-1)). SR Ca(2+) content was 289% greater and Ca(2+) buffering capacity was increased approximately 3-fold in atrial cells (B(max) 371.9+/-32.4 vs. 121.8+/-8 micromol x L(-1), all differences P<0.05). The fractional release of Ca(2+) from the SR was greater in atrial cells, although the gain of excitation contraction coupling was the same in both cell types. In summary our data demonstrate fundamental differences in Ca(2+) homeostasis between atrial and ventricular cells and we speculate that the increased SR Ca(2+) content may be significant in determining the increased prevalence of arrhythmias in the atria.


Journal of Clinical Investigation | 2014

Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes

Maura Greiser; Benoit-Gilles Kerfant; George S.B. Williams; Niels Voigt; Erik Harks; Katharine M. Dibb; Anne Giese; Janos Meszaros; Sander Verheule; Ursula Ravens; Maurits A. Allessie; James S. Gammie; Jolanda van der Velden; W. Jonathan Lederer; Dobromir Dobrev; Ulrich Schotten

Atrial fibrillation (AF) is characterized by sustained high atrial activation rates and arrhythmogenic cellular Ca2+ signaling instability; however, it is not clear how a high atrial rate and Ca2+ instability may be related. Here, we characterized subcellular Ca2+ signaling after 5 days of high atrial rates in a rabbit model. While some changes were similar to those in persistent AF, we identified a distinct pattern of stabilized subcellular Ca2+ signaling. Ca2+ sparks, arrhythmogenic Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and SR Ca2+ content were largely unaltered. Based on computational analysis, these findings were consistent with a higher Ca2+ leak due to PKA-dependent phosphorylation of SR Ca2+ channels (RyR2s), fewer RyR2s, and smaller RyR2 clusters in the SR. We determined that less Ca2+ release per [Ca2+]i transient, increased Ca2+ buffering strength, shortened action potentials, and reduced L-type Ca2+ current contribute to a stunning reduction of intracellular Na+ concentration following rapid atrial pacing. In both patients with AF and in our rabbit model, this silencing led to failed propagation of the [Ca2+]i signal to the myocyte center. We conclude that sustained high atrial rates alone silence Ca2+ signaling and do not produce Ca2+ signaling instability, consistent with an adaptive molecular and cellular response to atrial tachycardia.


Journal of Molecular and Cellular Cardiology | 2012

Age-related divergent remodeling of the cardiac extracellular matrix in heart failure: collagen accumulation in the young and loss in the aged

Helen K. Graham; Mark A. Richards; Jessica D. Clarke; David J. Greensmith; Sarah J. Briston; Mark C.S. Hall; Katharine M. Dibb; Andrew W. Trafford

The incidence of heart failure (HF) increases with age. This study sought to determine whether aging exacerbates structural and functional remodeling of the myocardium in HF. HF was induced in young (~18 months) and aged sheep (>8 years) by right ventricular tachypacing. In non-paced animals, aging was associated with increased left ventricular (LV) end diastolic internal dimensions (EDID, P<0.001), reduced fractional shortening (P<0.01) and an increase in myocardial collagen content (P<0.01). HF increased EDID and reduced fractional shortening in both young and aged animals, although these changes were more pronounced in the aged (P<0.05). Age-associated differences in cardiac extracellular matrix (ECM) remodeling occurred in HF with collagen accumulation in young HF (P<0.001) and depletion in aged HF (P<0.05). MMP-2 activity increased in the aged control and young HF groups (P<0.05). Reduced tissue inhibitor of metalloproteinase (TIMP) expression (TIMPs 3 and 4, P<0.05) was present only in the aged HF group. Secreted protein acidic and rich in cysteine (SPARC) was increased in aged hearts compared to young controls (P<0.05) while serum procollagen type I C-pro peptide (PICP) was increased in both young failing (P<0.05) and aged failing (P<0.01) animals. In conclusion, collagen content of the cardiac ECM changes in both aging and HF although; whether collagen accumulation or depletion occurs depends on age. Changes in TIMP expression in aged failing hearts alongside augmented collagen synthesis in HF provide a potential mechanism for the age-dependent ECM remodeling. Aging should therefore be considered an important factor when elucidating cardiac disease mechanisms.


The Journal of Physiology | 2007

Regulation of systolic [Ca2+]i and cellular Ca2+ flux balance in rat ventricular myocytes by SR Ca2+, L‐type Ca2+ current and diastolic [Ca2+]i

Katharine M. Dibb; D. A. Eisner; Andrew W. Trafford

The force–frequency response is an important physiological mechanism regulating cardiac output changes and is accompanied in vivo by β‐adrenergic stimulation. We sought to determine the role of sarcoplasmic reticulum (SR) Ca2+ content and L‐type current (ICa‐L) in the frequency response of the systolic Ca2+ transient alone and during β‐adrenergic stimulation. Experiments (on single rat ventricular myocytes) were designed to be as physiological as possible. Under current clamp stimulation SR Ca2+ content increased in line with stimulation frequency (1–8 Hz) but the systolic Ca2+ transient was maximal at 6 Hz. Under voltage clamp, increasing frequency decreased both systolic Ca2+ transient and ICa‐L. Normalizing peak ICa‐L by altering the test potential decreased the Ca2+ transient amplitude less than an equivalent reduction achieved through changes in frequency. This suggests that, in addition to SR Ca2+ content and ICa‐L, another factor, possibly refractoriness of Ca2+ release from the SR contributes. Under current clamp, β‐adrenergic stimulation (isoprenaline, 30 nm) increased both the Ca2+ transient and the SR Ca2+ content and removed the dependence of both on frequency. In voltage clamp experiments, β‐adrenergic stimulation still increased SR Ca2+ content yet there was an inverse relation between frequency and Ca2+ transient amplitude and ICa‐L. Diastolic [Ca2+]i increased with stimulation frequency and this contributed substantially (69.3 ± 6% at 8 Hz) to the total Ca2+ efflux from the cell. We conclude that Ca2+ flux balance is maintained by the combination of increased efflux due to elevated diastolic [Ca2+]i and a decrease of influx on ICa‐L on each pulse.


Circulation Research | 2014

Dependence of Cardiac Transverse Tubules on the BAR Domain Protein Amphiphysin II (BIN-1)

Jessica L. Caldwell; Charlotte E.R. Smith; Rebecca F. Taylor; Ashraf Kitmitto; D. A. Eisner; Katharine M. Dibb; Andrew W. Trafford

Rationale: Transverse tubules (t-tubules) regulate cardiac excitation–contraction coupling and exhibit interchamber and interspecies differences in expression. In cardiac disease, t-tubule loss occurs and affects the systolic calcium transient. However, the mechanisms controlling t-tubule maintenance and whether these factors differ between species, cardiac chambers, and in a disease setting remain unclear. Objective: To determine the role of the Bin/Amphiphysin/Rvs domain protein amphiphysin II (AmpII) in regulating t-tubule maintenance and the systolic calcium transient. Methods and Results: T-tubule density was assessed by di-4-ANEPPS, FM4-64 or WGA staining using confocal microscopy. In rat, ferret, and sheep hearts t-tubule density and AmpII protein levels were lower in the atrium than in the ventricle. Heart failure (HF) was induced in sheep using right ventricular tachypacing and ferrets by ascending aortic coarctation. In both HF models, AmpII protein and t-tubule density were decreased in the ventricles. In the sheep, atrial t-tubules were also lost in HF and AmpII levels decreased. Conversely, junctophilin 2 levels did not show interchamber differences in the rat and ferret nor did they change in HF in the sheep or ferret. In addition, in rat atrial and sheep HF atrial cells where t-tubules were absent, junctophilin 2 had sarcomeric intracellular distribution. Small interfering RNA–induced knockdown of AmpII protein reduced t-tubule density, calcium transient amplitude, and the synchrony of the systolic calcium transient. Conclusions: AmpII is intricately involved in t-tubule maintenance. Reducing AmpII protein decreases t-tubule density, reduces the amplitude, and increases the heterogeneity of the systolic calcium transient.


Journal of Molecular and Cellular Cardiology | 2015

How cardiomyocyte excitation, calcium release and contraction become altered with age.

Hirad A. Feridooni; Katharine M. Dibb; Susan E. Howlett

Cardiovascular disease is the main cause of death globally, accounting for over 17 million deaths each year. As the incidence of cardiovascular disease rises markedly with age, the overall risk of cardiovascular disease is expected to increase dramatically with the aging of the population such that by 2030 it could account for over 23 million deaths per year. It is therefore vitally important to understand how the heart remodels in response to normal aging for at least two reasons: i) to understand why the aged heart is increasingly susceptible to disease; and ii) since it may be possible to modify treatment of disease in older adults if the underlying substrate upon which the disease first develops is fully understood. It is well known that age modulates cardiac function at the level of the individual cardiomyocyte. Generally, in males, aging reduces cell shortening, which is associated with a decrease in the amplitude of the systolic Ca(2+) transient. This may arise due to a decrease in peak L-type Ca(2+) current. Sarcoplasmic reticulum (SR) Ca(2+) load appears to be maintained during normal aging but evidence suggests that SR function is disrupted, such that the rate of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA)-mediated Ca(2+) removal is reduced and the properties of SR Ca(2+) release in terms of Ca(2+) sparks are altered. Interestingly, Ca(2+) handling is modulated by age to a lesser degree in females. Here we review how cellular contraction is altered as a result of the aging process by considering expression levels and functional properties of key proteins involved in controlling intracellular Ca(2+). We consider how changes in both electrical properties and intracellular Ca(2+) handling may interact to modulate cardiomyocyte contraction. We also reflect on why cardiovascular risk may differ between the sexes by highlighting sex-specific variation in the age-associated remodeling process. This article is part of a Special Issue entitled CV Aging.


The Journal of Physiology | 2011

Impaired β-adrenergic responsiveness accentuates dysfunctional excitation-contraction coupling in an ovine model of tachypacing-induced heart failure.

Sarah J. Briston; Jessica L. Caldwell; Jessica D. Clarke; Mark A. Richards; David J. Greensmith; Helen K. Graham; Mark C.S. Hall; D. A. Eisner; Katharine M. Dibb; Andrew W. Trafford

Non‐technical summary  Heart failure is where the heart is unable to pump sufficient blood in order to meet the requirements of the body. Symptoms of heart failure often first present during exercise. During exercise the blood levels of a hormone, noradrenaline, increase and activate receptors on the muscle cells of the heart known as β‐receptors causing the heart to contract more forcefully. We show that in heart failure the response to β‐receptor stimulation is reduced and this appears to be due to a failure of the β‐receptor to signal correctly to downstream targets inside the cell. However, by‐passing the β‐receptor and directly activating one of the downstream targets, an enzyme known as adenylyl cyclase, inside the cell restores the function of the muscle cells in failing hearts. These observations provide a number of potential targets for therapies to improve the function of the heart in patients with heart failure.


Cardiovascular Research | 2003

Effects of eicosapentaenoic acid on cardiac SR Ca(2+)-release and ryanodine receptor function.

J S Swan; Katharine M. Dibb; N Negretti; S. C. O'Neill; R Sitsapesan

n-3 polyunsaturated fatty acids (PUFAs) can prevent life-threatening arrhythmias but the mechanisms responsible have not been established. There is strong evidence that part of the antiarrhythmic action of PUFAs is mediated through inhibition of the Ca(2+)-release mechanism of the sarcoplasmic reticulum (SR). It has also been shown that PUFAs activate protein kinase A (PKA) and produce effects in the cardiac cell similar to beta-adrenergic stimulation. We have investigated whether the inhibitory effect of PUFAs on the Ca(2+)-release mechanism is caused by direct inhibition of the SR Ca(2+)-release channel/ryanodine receptor (RyR) or requires activation of PKA. Experiments in intact cells under voltage-clamp show that the n-3 PUFA eicosapentaenoic acid (EPA) is able to reduce the frequency of spontaneous waves of Ca(2+)-release while increasing SR Ca(2+) content even when PKA activity is inhibited with H-89. This suggests that the EPA-induced inhibition of SR Ca(2+)-release is not dependent on activation of PKA. Consistent with this, single-channel studies demonstrate that EPA (10-100 microM), but not saturated fatty acids, reduce the open probability (Po) of the cardiac RyR incorporated into phospholipid bilayers. EPA also inhibited the binding of [3H]ryanodine to isolated heavy SR. Our results indicate that direct inhibition of RyR channel gating by PUFAs play an important role in the overall antiarrhythmic properties of these compounds.


Experimental Physiology | 2009

The mechanism and significance of the slow changes of ventricular action potential duration following a change of heart rate

D. A. Eisner; Katharine M. Dibb; Andrew W. Trafford

This article reviews the effects of changes of heart rate on the ventricular action potential duration. These can be divided into short term (fractions of a second), resulting from the kinetics of recovery of membrane currents, through to long term (up to days), resulting from changes of protein expression. We concentrate on the medium‐term changes (time course of the order of 100 s). These medium‐term changes occur in isolated tissues and in the intact human heart. They may protect against cardiac arrhythmias. Finally, we discuss the cellular mechanisms responsible for these changes.

Collaboration


Dive into the Katharine M. Dibb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. A. Eisner

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark R. Boyett

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge