Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharine M. Hardy is active.

Publication


Featured researches published by Katharine M. Hardy.


Clinical Cancer Research | 2012

Molecular Pathways: Vasculogenic Mimicry in Tumor Cells: Diagnostic and Therapeutic Implications

Dawn A. Kirschmann; Elisabeth A. Seftor; Katharine M. Hardy; Richard E.B. Seftor; Mary J.C. Hendrix

Tumor cell vasculogenic mimicry (VM) describes the functional plasticity of aggressive cancer cells forming de novo vascular networks, thereby providing a perfusion pathway for rapidly growing tumors, transporting fluid from leaky vessels, and/or connecting with endothelial-lined vasculature. The underlying induction of VM seems to be related to hypoxia, which may also promote the plastic, transendothelial phenotype of tumor cells capable of VM. Since its introduction in 1999 as a novel paradigm for melanoma tumor perfusion, many studies have contributed new insights into the underlying molecular pathways supporting VM in a variety of tumors, including melanoma, glioblastoma, carcinomas, and sarcomas. In particular, critical VM-modulating genes are associated with vascular (VE-cadherin, EphA2, VEGF receptor 1), embryonic and/or stem cell (Nodal, Notch4), and hypoxia-related (hypoxia-inducible factor, Twist1) signaling pathways. Each of these pathways warrants serious scrutiny as potential therapeutic, vascular targets, and diagnostic indicators of plasticity, drug resistance, and the aggressive metastatic phenotype. Clin Cancer Res; 18(10); 2726–32. ©2012 AACR.


Journal of Mammary Gland Biology and Neoplasia | 2010

ErbB/EGF Signaling and EMT in Mammary Development and Breast Cancer

Katharine M. Hardy; Brian W. Booth; Mary J.C. Hendrix; David S. Salomon; Luigi Strizzi

Activation of the ErbB family of receptor tyrosine kinases via cognate Epidermal Growth Factor (EGF)-like peptide ligands constitutes a major group of related signaling pathways that control proliferation, survival, angiogenesis and metastasis of breast cancer. In this respect, clinical trials with various ErbB receptor blocking antibodies and specific tyrosine kinase inhibitors have proven to be partially efficacious in the treatment of this heterogeneous disease. Induction of an embryonic program of epithelial-to-mesenchymal transition (EMT) in breast cancer, whereupon epithelial tumor cells convert to a more mesenchymal-like phenotype, facilitates the migration, intravasation, and extravasation of tumor cells during metastasis. Breast cancers which exhibit properties of EMT are highly aggressive and resistant to therapy. Activation of ErbB signaling can regulate EMT-associated invasion and migration in normal and malignant mammary epithelial cells, as well as modulating discrete stages of mammary gland development. The purpose of this review is to summarize current information regarding the role of ErbB signaling in aspects of EMT that influence epithelial cell plasticity during mammary gland development and tumorigenesis. How this information may contribute to the improvement of therapeutic approaches in breast cancer will also be addressed.


Cancer Research | 2010

Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype.

Katharine M. Hardy; Dawn A. Kirschmann; Elisabeth A. Seftor; Naira V. Margaryan; Lynne Marie Postovit; Luigi Strizzi; Mary J.C. Hendrix

Metastatic melanoma is an aggressive skin cancer associated with poor prognosis. The reactivation of the embryonic morphogen Nodal in metastatic melanoma has previously been shown to regulate the aggressive behavior of these tumor cells. During the establishment of left-right asymmetry in early vertebrate development, Nodal expression is specifically regulated by a Notch signaling pathway. We hypothesize that a similar relationship between Notch and Nodal may be reestablished in melanoma. In this study, we investigate whether cross talk between the Notch and Nodal pathways can explain the reactivation of Nodal in aggressive metastatic melanoma cells. We show a molecular link between Notch and Nodal signaling in the aggressive melanoma cell line MV3 via the activity of an RBPJ-dependent Nodal enhancer element. We show a precise correlation between Notch4 and Nodal expression in multiple aggressive cell lines but not poorly aggressive cell lines. Surprisingly, Notch4 is specifically required for expression of Nodal in aggressive cells and plays a vital role both in the balance of cell growth and in the regulation of the aggressive phenotype. In addition, Notch4 function in vasculogenic mimicry and anchorage-independent growth in vitro is due in part to Notch4 regulation of Nodal. This study identifies an important role for cross talk between Notch4 and Nodal in metastatic melanoma, placing Notch4 upstream of Nodal, and offers a potential molecular target for melanoma therapy.


Cancer Research | 2009

Development and Cancer: At the Crossroads of Nodal and Notch Signaling

Luigi Strizzi; Katharine M. Hardy; Elisabeth A. Seftor; Fabricio F. Costa; Dawn A. Kirschmann; Richard E.B. Seftor; Lynne Marie Postovit; Mary J.C. Hendrix

Aggressive tumor cells express a plastic, multipotent phenotype similar to embryonic stem cells. However, the absence of major regulatory checkpoints in these tumor cells allows aberrant activation of embryonic signaling pathways, which seems to contribute to their plastic phenotype. Emerging evidence showing the molecular cross-talk between two major stem cell signaling pathways Nodal and Notch suggests a promising therapeutic strategy that could target aggressive tumor cells on the basis of their unique plasticity, and provide new insights into the mechanisms underlying the re-emergence of developmental signaling pathways during tumor progression.


Journal of Biological Chemistry | 2005

Extracellular Trafficking of Myocilin in Human Trabecular Meshwork Cells

Katharine M. Hardy; Emely A. Hoffman; Pedro Gonzalez; Brian S. McKay; W. Daniel Stamer

Myocilin (MYOC) is a protein with a broad expression pattern, but unknown function. MYOC associates with intracellular structures that are consistent with secretory vesicles, however, in most cell types studied, MYOC is limited to the intracellular compartment. In the trabecular meshwork, MYOC associates with intracellular vesicles, but is also found in the extracellular space. The purpose of the present study was to better understand the mechanism of extracellular transport of MYOC in trabecular meshwork cells. Using a biochemical approach, we found that MYOC localizes intracellularly to both the cytosolic and particulate fractions. When intracellular membranes were separated over a linear sucrose gradient, MYOC equilibrated in a fraction less dense than traditional secretory vesicles and lysosomes. In pulse-labeling experiments that followed nascent MYOC over time, the characteristic doublet observed for MYOC by SDS-PAGE did not change, even in the presence of brefeldin A; indicating that MYOC is not glycosylated and is not released via a traditional secretory mechanism. When conditioned media from human trabecular meshwork cells were examined, both native and recombinant MYOC associated with an extracellular membrane population having biochemical characteristics of exosomes, and containing the major histocompatibility complex class II antigen, HLA-DR. The association of MYOC with exosome-like membranes appeared to be specific, on the extracellular face, and reversible. Taken together, data suggest that MYOC appears in the extracellular space of trabecular meshwork cells by an unconventional mechanism, likely associated with exosome-like vesicles.


Developmental Biology | 2008

Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation

Katharine M. Hardy; Robert J. Garriock; Tatiana A. Yatskievych; Susan L. D'Agostino; Parker B. Antin; Paul A. Krieg

Knowledge of the molecular mechanisms regulating cell ingression, epithelial-mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak. Here, we identify a previously uncharacterized chicken Wnt11 gene, Wnt11b, that is orthologous to the frog Wnt11 and zebrafish Wnt11 (silberblick) genes. Chicken Wnt11b is expressed in the primitive streak in a pattern similar to chicken Wnt5a and Wnt5b. When non-canonical Wnt signaling is blocked using a Dishevelled dominant-negative protein, gastrulation movements are inhibited and cells accumulate in the primitive streak. Furthermore, disruption of non-canonical Wnt signaling by overexpression of full-length or dominant-negative Wnt11b or Wnt5a constructions abrogates normal cell migration through the primitive streak. We conclude that non-canonical Wnt signaling, mediated in part by Wnt11b, is important for regulation of gastrulation cell movements in the avian embryo.


BMC Developmental Biology | 2011

FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression

Katharine M. Hardy; Tatiana A. Yatskievych; Jay H. Konieczka; Alexander S. Bobbs; Parker B. Antin

BackgroundFGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos.ResultsWe find that pharmacological inhibition of FGFR activity blocks migration of cells through the primitive streak of chicken embryos without apparent alterations in the level or intracellular localization of E-cadherin. E-cadherin protein is localized to the periphery of epiblast, primitive streak and some mesodermal cells. FGFR inhibition leads to downregulation of a large number of regulatory genes in the preingression epiblast adjacent to the primitive streak, the primitive streak and the newly formed mesoderm. This includes members of the FGF, NOTCH, EPH, PDGF, and canonical and non-canonical WNT pathways, negative modulators of these pathways, and a large number of transcriptional regulatory genes. SNAI2 expression in the primitive streak and mesoderm is not altered by FGFR inhibition, but is downregulated only in the preingression epiblast region with no significant effect on E-cadherin. Furthermore, over expression of SNAIL has no discernable effect on E-cadherin protein levels or localization in epiblast, primitive streak or mesodermal cells. FGFR activity modulates distinct downstream pathways including RAS/MAPK and PI3K/AKT. Pharmacological inhibition of MEK or AKT indicate that these downstream effectors control discrete and overlapping groups of genes during gastrulation. FGFR activity regulates components of several pathways known to be required for cell migration through the streak or in the mesoderm, including RHOA, the non-canonical WNT pathway, PDGF signalling and the cell adhesion protein N-cadherin.ConclusionsIn chicken embryos, FGF signalling regulates cell movement through the primitive streak by mechanisms that appear to be independent of changes in E-cadherin expression or protein localization. The positive and negative effects on large groups of genes by pharmacological inhibition of FGF signalling, including major signalling pathways and transcription factor families, indicates that the FGF pathway is a focal point of regulation during gastrulation in chicken.


Circulation Research | 2006

Depolymerized Hyaluronan Induces Vascular Endothelial Growth Factor, a Negative Regulator of Developmental Epithelial-to-Mesenchymal Transformation

Laurel S. Rodgers; Sofia Lalani; Katharine M. Hardy; Xueyu Xiang; Derrick Broka; Parker B. Antin; Todd D. Camenisch

Cardiac malformations constitute the most common birth defects, of which heart septal and valve defects are the most frequent forms diagnosed in infancy. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of hyaluronan (HA), cardiac jelly, and endocardial cushions, a loss of vascular integrity, and death at embryonic day 9.5. Despite the requirements for Has2 and its product, HA, in the developing heart, little is known about the normal processing and removal of HA during development. Cell culture studies show that HA obtains new bioactivity after depolymerization into small oligosaccharides. We previously showed reduction in Has2 expression and diminished presence of HA at later stages of heart development as tissue remodeling formed the leaflets of the cardiac valves. Here we show that small oligosaccharide forms of HA (o-HA) act antagonistically to developmental epithelial-to-mesenchymal transformation (EMT), which is required to generate the progenitor cells that populate the endocardial cushions. We further show that o-HA induces vascular endothelial growth factor (VEGF), which acts as a negative regulator of EMT. This is the first report illustrating a functional link between oligosaccharide HA and VEGF. Collectively, our data indicate that following endocardial cell EMT, native HA is likely processed to o-HA, which stimulates VEGF activity to attenuate cardiac developmental EMT.


Breast Cancer Research | 2012

Potential for the embryonic morphogen Nodal as a prognostic and predictive biomarker in breast cancer

Luigi Strizzi; Katharine M. Hardy; Naira V. Margaryan; David W. Hillman; Elisabeth A. Seftor; B. Chen; Xochiquetzal J. Geiger; E. Aubrey Thompson; Wilma L. Lingle; Cathy A. Andorfer; Edith A. Perez; Mary J.C. Hendrix

IntroductionThe re-emergence of the tumour growth factor-beta (TGF-beta)-related embryonic morphogen Nodal has recently been reported in several different human cancers. In this study, we examined the expression of Nodal in a series of benign and malignant human breast tissues to determine the clinical significance of this expression and whether Nodal could represent a potential therapeutic target in breast cancer.MethodsTissue sections from 431 therapeutically naive patients diagnosed with benign or malignant breast disease were stained for Nodal by immunohistochemistry and analysed in a blinded manner. The degree of Nodal staining was subsequently correlated with available clinical data, such as diagnoses and disease stage. These tissue findings were further explored in breast cancer cell lines MDA-MB-231 and MDA-MB-468 treated with a Nodal blocking antibody to determine biological effects for target validation.ResultsA variable degree of Nodal staining was detected in all samples. The intensity of Nodal staining was significantly greater in undifferentiated, advanced stage, invasive breast cancer compared with benign breast disease or early stage breast cancer. Treatment of human breast cancer cells in vitro with Nodal blocking antibody significantly reduced proliferation and colony-forming ability in soft agar, concomitant with increased apoptosis.ConclusionsThese data suggest a potential role for Nodal as a biomarker for disease progression and a promising target for anti-Nodal therapy in breast cancer.


Laboratory Investigation | 2011

Embryonic signaling in melanoma: Potential for diagnosis and therapy

Luigi Strizzi; Katharine M. Hardy; Gina Kirsammer; Pedram Gerami; Mary J.C. Hendrix

As the frequency of melanoma diagnosis increases, current treatment strategies are still struggling to significantly impact patient survival. Some promise has been shown in treating certain melanomas by targeting activated signaling pathways resulting from specific mutations in proteins, such as BRAF and NRAS. Recently, the identification of embryonic signaling pathways in melanoma has helped us better understand certain biological characteristics, such as cellular heterogeneity and phenotypic plasticity, and has provided novel insight pertinent to diagnosis and therapy. For instance, our studies have shown that the TGF-β family member, Nodal, is expressed in melanoma and is responsible, at least in part, for tumor cell plasticity and aggressiveness. Since the majority of normal adult tissues do not express Nodal, we reason that this embryonic morphogen could be used to identify and target aggressive melanoma cells. We have also identified that molecular cross-talk between the Notch and Nodal pathways may represent a mechanism responsible for the overexpression of Nodal in melanoma. Further exploitation of the relationship between embryonic signaling pathways and cancer pathogenesis could lead to novel approaches for diagnosis and therapy in cancers, such as melanoma.

Collaboration


Dive into the Katharine M. Hardy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge