Käthe M. Dahlström
Åbo Akademi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Käthe M. Dahlström.
Frontiers in Plant Science | 2013
Jouni Toivola; Lauri Nikkanen; Käthe M. Dahlström; Tiina A. Salminen; Anna Lepistö; hb Florence Vignols; Eevi Rintamäki
Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC) contains both reductase (NTRd) and thioredoxin (TRXd) domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive TRXd, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modeling of the three-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protective pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for sustainable bioenergy production.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Enrique Llobet; Verónica Martínez-Moliner; David Moranta; Käthe M. Dahlström; Verónica Regueiro; Anna Tomás; Victoria Cano; Camino Pérez-Gutiérrez; Christian G. Frank; Helena Fernández-Carrasco; José Luis Insua; Tiina A. Salminen; Junkal Garmendia; José Antonio Bengoechea
Significance The host launches an antimicrobial defense program upon infection. A long-held belief is that pathogens prevent host recognition by remodeling their surface in response to different host microenvironments. Yet direct evidence that this happens in vivo is lacking. Here we report that the pathogen Klebsiella pneumoniae modifies one of its surface molecules, the lipopolysaccharide, in the lungs of mice to evade immune surveillance. These in vivo-induced changes are lost in bacteria grown after isolation from the tissues. These lipopolysaccharide modifications contribute to survival in vivo and mediate resistance to colistin, one of the last options to treat multidrug-resistant Klebsiella. This work opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern. The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.
PLOS Pathogens | 2012
Mar Reinés; Enrique Llobet; Käthe M. Dahlström; Camino Pérez-Gutiérrez; Catalina M. Llompart; Nuria Torrecabota; Tiina A. Salminen; José Antonio Bengoechea
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3′-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS.
Plant Physiology | 2014
Nina Lehtimäki; Minna M. Koskela; Käthe M. Dahlström; Eveliina Pakula; Minna Lintala; Martin Scholz; Michael Hippler; Guy T. Hanke; Anne Rokka; Natalia Battchikova; Tiina A. Salminen; Paula Mulo
Enzymes that reduce NADP+ photosynthetically are regulated by multiple posttranslational modifications in a partially light-dependent manner. Rapid responses of chloroplast metabolism and adjustments to photosynthetic machinery are of utmost importance for plants’ survival in a fluctuating environment. These changes may be achieved through posttranslational modifications of proteins, which are known to affect the activity, interactions, and localization of proteins. Recent studies have accumulated evidence about the crucial role of a multitude of modifications, including acetylation, methylation, and glycosylation, in the regulation of chloroplast proteins. Both of the Arabidopsis (Arabidopsis thaliana) leaf-type FERREDOXIN-NADP+ OXIDOREDUCTASE (FNR) isoforms, the key enzymes linking the light reactions of photosynthesis to carbon assimilation, exist as two distinct forms with different isoelectric points. We show that both AtFNR isoforms contain multiple alternative amino termini and undergo light-responsive addition of an acetyl group to the α-amino group of the amino-terminal amino acid of proteins, which causes the change in isoelectric point. Both isoforms were also found to contain acetylation of a conserved lysine residue near the active site, while no evidence for in vivo phosphorylation or glycosylation was detected. The dynamic, multilayer regulation of AtFNR exemplifies the complex regulatory network systems controlling chloroplast proteins by a range of posttranslational modifications, which continues to emerge as a novel area within photosynthesis research.
FEBS Journal | 2014
Cecilia Blikstad; Käthe M. Dahlström; Tiina A. Salminen; Mikael Widersten
We have analyzed the effects of mutations inserted during directed evolution of a specialized enzyme, Escherichia coli S‐1,2‐propanediol oxidoreductase (FucO). The kinetic properties of evolved variants have been determined and the observed differences have been rationalized by modeling the tertiary structures of isolated variants and the wild‐type enzyme. The native substrate, S‐1,2‐propanediol, as well as phenylacetaldehyde and 2S‐3‐phenylpropane‐1,2‐diol, which are new substrates accepted by isolated variants, were docked into the active sites. The study provides a comprehensive picture of how acquired catalytic properties have arisen via an intermediate generalist enzyme, which had acquired a single mutation (L259V) in the active site. Further mutagenesis of this generalist resulted in a new specialist catalyst. We have also been able to relate the native enzyme activities to the evolved ones and linked the differences to individual amino acid residues important for activity and selectivity. F254 plays a dual role in the enzyme function. First, mutation of F254 into an isoleucine weakens the interactions with the coenzyme thereby increasing its dissociation rate from the active site and resulting in a four‐fold increase in turnover number with S‐1,2‐propanediol. Second, F254 is directly involved in binding of aryl‐substituted substrates via π–π interactions. On the other hand, N151 is critical in determining the substrate scope since the side chain amide group stabilizes binding of 1,2‐substituted diols and is apparently necessary for enzymatic activity with these substrates. Moreover, the side chain of N151 introduces steric hindrance, which prevents high activity with phenylacetaldehyde. Additionally, the hydroxyl group of T149 is required to maintain the catalytically important hydrogen bonding network.
Journal of Theoretical Biology | 2015
Käthe M. Dahlström; Tiina A. Salminen
Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A.
Archives of Microbiology | 2013
Dalton Carmel; Käthe M. Dahlström; Maija Holmström; Yagut Allahverdiyeva; Natalia Battchikova; Eva-Mari Aro; Tiina A. Salminen; Paula Mulo
The slr0006 gene of Synechocystis sp. PCC 6803 is upregulated at mRNA and protein level under carbon limitation. The T(N11)A motif in the upstream region of slr0006 is a binding site for transcriptional regulator NdhR, and accumulation of the Slr0006 protein in ndhR deletion mutant grown in high CO2 suggests that NdhR may be a negative regulator of slr0006. Accumulation requires photosynthetic electron transfer, because no Slr0006 was detected in darkness or in the presence of electron transfer inhibitors DCMU and DBMIB. Structural modeling of the Slr0006 protein suggests that it adopts Sua5/YciO/YrdC family fold, which is an α/β twisted open-sheet structure. Similar to the structurally known members of this protein family, the surface of Slr0006 contains positively charged cavity indicating a possible binding site for RNA or nucleotides. Moreover, Slr0006 was co-localized with 30S ribosomal proteins and rRNA, suggesting involvement in processes linked to protein synthesis.
Physiologia Plantarum | 2018
Minna M. Koskela; Käthe M. Dahlström; Guillermina Goñi; Nina Lehtimäki; Markus Nurmi; Adrián Velázquez-Campoy; Guy Hanke; Bettina Bölter; Tiina A. Salminen; Milagros Medina; Paula Mulo
Plastidic ferredoxin-NADP+ oxidoreductases (FNRs; EC:1.18.1.2) together with bacterial type FNRs (FPRs) form the plant-type FNR family. Members of this group contain a two-domain scaffold that forms the basis of an extended superfamily of flavin adenine dinucleotide (FAD) dependent oxidoreductases. In this study, we show that the Arabidopsis thaliana At1g15140 [Ferredoxin-NADP+ oxidoreductase-like (FNRL)] is an FAD-containing NADPH dependent oxidoreductase present in the chloroplast stroma. Determination of the kinetic parameters using the DCPIP NADPH-dependent diaphorase assay revealed that the reaction catalysed by a recombinant FNRL protein followed a saturation Michaelis-Menten profile on the NADPH concentration with kcat = 3.2 ± 0.2 s-1 , KmNADPH = 1.6 ± 0.3 μM and kcat /KmNADPH = 2.0 ± 0.4 μM-1 s-1 . Biochemical assays suggested that FNRL is not likely to interact with Arabidopsis ferredoxin 1, which is supported by the sequence analysis implying that the known Fd-binding residues in plastidic FNRs differ from those of FNRL. In addition, based on structural modelling FNRL has an FAD-binding N-terminal domain built from a six-stranded β-sheet and one α-helix, and a C-terminal NADP+ -binding α/β domain with a five-stranded β-sheet with a pair of α-helices on each side. The FAD-binding site is highly hydrophobic and predicted to bind FAD in a bent conformation typically seen in bacterial FPRs.
Cell Death & Differentiation | 2018
Christian Antila; Vilma Rraklli; Henri A. Blomster; Käthe M. Dahlström; Tiina A. Salminen; Johan Holmberg; Lea Sistonen; Cecilia Sahlgren
The Notch signaling pathway is a key regulator of stem cells during development, and its deregulated activity is linked to developmental defects and cancer. Transcriptional activation of Notch target genes requires cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD1), NICD1 migration into the nucleus, and assembly of a transcriptional complex. Post-translational modifications of Notch regulate its trafficking, turnover, and transcriptional activity. Here, we show that NICD1 is modified by small ubiquitin-like modifier (SUMO) in a stress-inducible manner. Sumoylation occurs in the nucleus where NICD1 is sumoylated in the RBPJ-associated molecule (RAM) domain. Although stress and sumoylation enhance nuclear localization of NICD1, its transcriptional activity is attenuated. Molecular modeling indicates that sumoylation can occur within the DNA-bound ternary transcriptional complex, consisting of NICD1, the transcription factor Suppressor of Hairless (CSL), and the co-activator Mastermind-like (MAML) without its disruption. Mechanistically, sumoylation of NICD1 facilitates the recruitment of histone deacetylase 4 (HDAC4) to the Notch transcriptional complex to suppress Notch target gene expression. Stress-induced sumoylation decreases the NICD1-mediated induction of Notch target genes, which was abrogated by expressing a sumoylation-defected mutant in cells and in the developing central nervous system of the chick in vivo. Our findings of the stress-inducible sumoylation of NICD1 reveal a novel context-dependent regulatory mechanism of Notch target gene expression.
Molecular Phylogenetics and Evolution | 2017
Leonor Lopes de Carvalho; Tiina A. Salminen; Käthe M. Dahlström
The universally conserved TsaC/TsaC2/YciO family of proteins is essential for the N6-threonylcarbamoyladenosine modification present in almost all ANN-decoding tRNAs. Previously, the family has been grouped into the TsaC/TsaC2 and YciO subfamilies. We used sequence analysis, phylogenetic methods and homology modeling to show that a third subfamily, the Slr0006-like subfamily, exists exclusively in some cyanobacteria. The Slr0006-like proteins are solely found together with both TsaC and YciO homologs, indicating a distinct function for the Slr0006-like subfamily. Accordingly, the homology models show that the amino acids in their putative binding clefts differ significantly. Hence, we introduce a new cyanobacterial subfamily of proteins with the TsaC-domain fold, along with the generated classification rules to assign new members to the correct cyanobacterial subfamily.