Katherine A. Dafforn
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katherine A. Dafforn.
Frontiers in Ecology and the Environment | 2015
Katherine A. Dafforn; Tim M. Glasby; Laura Airoldi; Natalie K. Rivero; Mariana Mayer-Pinto; Emma L. Johnston
Underwater cities have long been the subject of science fiction novels and movies, but the “urban sprawl” of artificial structures being developed in marine environments has widespread ecological consequences. The practice of combining ecological principles with the planning, design, and operation of marine artificial structures is gaining in popularity, and examples of successful engineering applications are accumulating. Here we use case studies to explore marine ecological engineering in practice, and introduce a conceptual framework for designing artificial structures with multiple functions. The rate of marine urbanization will almost certainly escalate as “aquatourism” drives the development of underwater accommodations. We show that current and future marine developments could be designed to reduce negative ecological impacts while promoting ecosystem services.
Marine Pollution Bulletin | 2012
Melanie Y. Sun; Katherine A. Dafforn; Mark V. Brown; Emma L. Johnston
With many environments worldwide experiencing at least some degree of anthropogenic modification, there is great urgency to identify sensitive indicators of ecosystem stress. Estuarine organisms are particularly vulnerable to anthropogenic contaminants. This study presents bacterial communities as sensitive indicators of contaminant stress. Sediments were collected from multiple sites within inner and outer zones of three heavily modified and three relatively unmodified estuaries. Bacterial communities were censused using Automated Ribosomal Intergenic Spacer Analysis and analysed for a suite of metal and PAH contaminants. Shifts in both bacterial community composition and diversity showed strong associations with sediment contaminant concentrations, particularly with metals. Importantly, these changes are discernable from environmental variation inherent to highly complex estuarine environments. Moreover, variation in bacterial communities within sites was limited. This allowed for differences between sites, zones and estuaries to be explained by variables of interest such as contaminants that vary between, but not within individual sites.
Biofouling | 2009
Katherine A. Dafforn; Emma L. Johnston; Tim M. Glasby
Global increases in urban development have resulted in severe habitat modification in many estuaries. Most are now dominated by artificial structures, which might have a myriad of effects on native species. The provision of extra hard substrata presents additional free space, and recent research suggests non-indigenous epifauna may be able to exploit these artificial structures (particularly pontoons) more effectively than native species. The early development of fouling assemblages was compared on settlement plates attached to fixed or moving experimental structures at depths of 0.5 m and 2 m. Invertebrate invaders as a group were disproportionately more numerous on shallow, moving plates (essentially floating surfaces) than on deeper plates, whereas native epifauna were less numerous than invaders in all treatments. Importantly, however, individual invasive species showed differing effects of movement and depth. Future management strategies should take into account the potential for shallow, moving structures to enhance invader dominance and strongly consider using fixed structures to reduce opportunities for invaders.
Biofouling | 2008
Katherine A. Dafforn; Tim M. Glasby; Emma L. Johnston
Maritime transport is a primary vector for many marine invaders. For the past two decades, most commercial vessels have used tributyltin (TBT) antifouling (AF) paint, whereas recreational vessels have been restricted to alternatives, most commonly containing copper. Settlement plates painted with a collar of copper or TBT AF paint, and unpainted control plates, were deployed in commercial and recreational embayments in Port Jackson, Australia, and sampled photographically after 5 and 10 months. Copper enhanced early recruitment of several non-indigenous species (NIS), whereas recruitment of indigenous species was typically reduced by copper. TBT limited the recruitment of NIS for just 5 months and indigenous species, for the entire study. The results suggest that the use of toxic AF paints, and the possible accumulation of AF biocides in embayments, may be negatively affecting indigenous epibiota. Conversely, copper antifoulants on recreational vessels may be facilitating the transport and establishment of copper tolerant NIS into disturbed estuarine habitats.
PLOS ONE | 2012
Katherine A. Dafforn; Tim M. Glasby; Emma L. Johnston
Natural systems are increasingly being modified by the addition of artificial habitats which may facilitate invasion. Where invaders are able to disperse from artificial habitats, their impact may spread to surrounding natural communities and therefore it is important to investigate potential factors that reduce or enhance invasibility. We surveyed the distribution of non-indigenous and native invertebrates and algae between artificial habitats and natural reefs in a marine subtidal system. We also deployed sandstone plates as experimental ‘reefs’ and manipulated the orientation, starting assemblage and degree of shading. Invertebrates (non-indigenous and native) appeared to be responding to similar environmental factors (e.g. orientation) and occupied most space on artificial structures and to a lesser extent reef walls. Non-indigenous invertebrates are less successful than native invertebrates on horizontal reefs despite functional similarities. Manipulative experiments revealed that even when non-indigenous invertebrates invade vertical “reefs”, they are unlikely to gain a foothold and never exceed covers of native invertebrates (regardless of space availability). Community ecology suggests that invertebrates will dominate reef walls and algae horizontal reefs due to functional differences, however our surveys revealed that native algae dominate both vertical and horizontal reefs in shallow estuarine systems. Few non-indigenous algae were sampled in the study, however where invasive algal species are present in a system, they may present a threat to reef communities. Our findings suggest that non-indigenous species are less successful at occupying space on reef compared to artificial structures, and manipulations of biotic and abiotic conditions (primarily orientation and to a lesser extent biotic resistance) on experimental “reefs” explained a large portion of this variation, however they could not fully explain the magnitude of differences.
Journal of Environmental Management | 2015
Katherine A. Dafforn; Mariana Mayer-Pinto; Rebecca L. Morris; Nathan Waltham
Globally the coastal zone is suffering the collateral damage from continuing urban development and construction, expanding resource sectors, increasing population, regulation to river flow, and on-going land change and degradation. While protection of natural coastal habitat is recommended, balancing conservation with human services is now the challenge for managers. Marine infrastructure such as seawalls, marinas and offshore platforms is increasingly used to support and provide services, but has primarily been designed for engineering purposes without consideration of the ecological consequences. Increasingly developments are seeking alternatives to hard engineering and a range of ecological solutions has begun to replace or be incorporated into marine and coastal infrastructure. But too often, hard engineering remains the primary strategy because the tools for managers to implement ecological solutions are either lacking or not supported by policy and stakeholders. Here we outline critical research needs for marine urban development and emerging strategies that seek to mitigate the impacts of marine infrastructure. We present case studies to highlight the strategic direction necessary to support management decisions internationally.
Chemosphere | 2014
Katelyn J. Edge; Katherine A. Dafforn; Stuart L. Simpson; Anthony C. Roach; Emma L. Johnston
Cost-effective and sensitive measures of anthropogenic stress are necessary tools in any environmental monitoring program. When implementing new monitoring tools in a region, rigorous laboratory and field studies are essential for characterizing the sensitivity and efficacy of the approach. We exposed the oyster Saccostrea glomerata to various individual contaminants through multiple exposure pathways (water- and food-borne) in the laboratory and measured two biomarker responses, lysosomal membrane stability (LMS) and lipid peroxidation (LPO). LMS was sensitive to both contaminant exposure pathways. We subsequently measured this biomarker in oysters which had been experimentally deployed at multiple sites in each of ten estuaries with varying levels of contamination associated with re-suspended sediments. There was a strong association between LMS and metal exposure, despite substantial natural variation in water quality parameters. Our results illustrate the potential use of LMS as a pragmatic indicator of biotic injury in environmental monitoring programs for re-suspended contaminated sediments.
Marine and Freshwater Research | 2016
Katherine A. Dafforn; Emma L. Johnston; Angus J. P. Ferguson; C.L. Humphrey; W. Monk; Susan J. Nichols; Stuart L. Simpson; Mirela G. Tulbure; Donald J. Baird
Aquatic ecosystems are under threat from multiple stressors, which vary in distribution and intensity across temporal and spatial scales. Monitoring and assessment of these ecosystems have historically focussed on collection of physical and chemical information and increasingly include associated observations on biological condition. However, ecosystem assessment is often lacking because the scale and quality of biological observations frequently fail to match those available from physical and chemical measurements. The advent of high-performance computing, coupled with new earth observation platforms, has accelerated the adoption of molecular and remote sensing tools in ecosystem assessment. To assess how emerging science and tools can be applied to study multiple stressors on a large (ecosystem) scale and to facilitate greater integration of approaches among different scientific disciplines, a workshop was held on 10–12 September 2014 at the Sydney Institute of Marine Sciences, Australia. Here we introduce a conceptual framework for assessing multiple stressors across ecosystems using emerging sources of big data and critique a range of available big-data types that could support models for multiple stressors. We define big data as any set or series of data, which is either so large or complex, it becomes difficult to analyse using traditional data analysis methods.
Biofouling | 2013
Natalie K. Rivero; Katherine A. Dafforn; Melinda A. Coleman; Emma L. Johnston
Anthropogenic modifications to waterways are common and their ecological consequences must be understood to effectively conserve local biodiversity. The facilitation of recreational boating activities often requires substantial alteration of natural areas, however the environmental and ecological consequences of such alterations are rarely described in the scientific literature. In this study, ecological and physico-chemical conditions were investigated in a recreational boating marina, located inside a marine park on the south-east coast of Australia. Recruitment panels were deployed for 8 weeks both inside and outside the marina, and differences in the composition of the developing fouling communities were observed. The recruitment of taxa, which often have short-lived larvae, was increased inside the marina (bryozoans, spirorbids and sponges) while the recruitment of taxa, which often have longer-lived larvae, was reduced or absent (barnacles, solitary ascidians and non-spirorbid polychaetes). Differences were also observed in environmental conditions inside the marina cf. directly outside. The marina environment had higher turbidity, temperature and pH along with higher concentrations of lead and copper in suspended sediments, while flow rates and trapped sediment loads were reduced inside the marina. The differences observed in the study suggest that there may be marked environmental changes associated with marina developments. The potential ecological consequences of these changes should be a primary consideration during the planning process, particularly for developments in locations of notable ecological value.
PLOS ONE | 2013
Katherine A. Dafforn; Brendan P. Kelaher; Stuart L. Simpson; Melinda A. Coleman; Pat Hutchings; Graeme F. Clark; Nathan A. Knott; Martina A. Doblin; Emma L. Johnston
Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.
Collaboration
Dive into the Katherine A. Dafforn's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs