Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine A. Gould is active.

Publication


Featured researches published by Katherine A. Gould.


Genome Biology and Evolution | 2010

Evolutionary Genomics of Staphylococcus aureus Reveals Insights into the Origin and Molecular Basis of Ruminant Host Adaptation

Caitriona M. Guinane; Nouri L. Ben Zakour; María Ángeles Tormo-Más; Lucy A. Weinert; Bethan V. Lowder; Robyn A. Cartwright; Davida S. Smyth; Cyril J. Smyth; Jodi A. Lindsay; Katherine A. Gould; Adam A. Witney; Jason Hinds; Jonathan P. Bollback; Andrew Rambaut; José R. Penadés; J. Ross Fitzgerald

Phenotypic biotyping has traditionally been used to differentiate bacteria occupying distinct ecological niches such as host species. For example, the capacity of Staphylococcus aureus from sheep to coagulate ruminant plasma, reported over 60 years ago, led to the description of small ruminant and bovine S. aureus ecovars. The great majority of small ruminant isolates are represented by a single, widespread clonal complex (CC133) of S. aureus, but its evolutionary origin and the molecular basis for its host tropism remain unknown. Here, we provide evidence that the CC133 clone evolved as the result of a human to ruminant host jump followed by adaptive genome diversification. Comparative whole-genome sequencing revealed molecular evidence for host adaptation including gene decay and diversification of proteins involved in host–pathogen interactions. Importantly, several novel mobile genetic elements encoding virulence proteins with attenuated or enhanced activity in ruminants were widely distributed in CC133 isolates, suggesting a key role in its host-specific interactions. To investigate this further, we examined the activity of a novel staphylococcal pathogenicity island (SaPIov2) found in the great majority of CC133 isolates which encodes a variant of the chromosomally encoded von Willebrand-binding protein (vWbpSov2), previously demonstrated to have coagulase activity for human plasma. Remarkably, we discovered that SaPIov2 confers the ability to coagulate ruminant plasma suggesting an important role in ruminant disease pathogenesis and revealing the origin of a defining phenotype of the classical S. aureus biotyping scheme. Taken together, these data provide broad new insights into the origin and molecular basis of S. aureus ruminant host specificity.


Journal of Clinical Microbiology | 2011

Improved Detection of Nasopharyngeal Cocolonization by Multiple Pneumococcal Serotypes by Use of Latex Agglutination or Molecular Serotyping by Microarray

Paul Turner; Jason Hinds; Claudia Turner; Auscharee Jankhot; Katherine A. Gould; Stephen D. Bentley; François Nosten; David Goldblatt

ABSTRACT Identification of Streptococcus pneumoniae in the nasopharynx is critical for an understanding of transmission, estimates of vaccine efficacy, and possible replacement disease. Conventional nasopharyngeal swab (NPS) culture and serotyping (the WHO protocol) is likely to underestimate multiple-serotype carriage. We compared the WHO protocol with methods aimed at improving cocolonization detection. One hundred twenty-five NPSs from an infant pneumococcal-carriage study, containing ≥1 serotype by WHO culture, were recultured in duplicate. A sweep of colonies from one plate culture was serotyped by latex agglutination. DNA extracted from the second plate was analyzed by S. pneumoniae molecular-serotyping microarray. Multiple serotypes were detected in 11.2% of the swabs by WHO culture, 43.2% by sweep serotyping, and 48.8% by microarray. Sweep and microarray were more likely to detect multiple serotypes than WHO culture (P < 0.0001). Cocolonization detection rates were similar between microarray and sweep, but the microarray identified the greatest number of serotypes. A common serogroup type was identified in 95.2% of swabs by all methods. WHO methodology significantly underestimates multiple-serotype carriage compared to these alternate methods. Sweep serotyping is cost-effective and field deployable but may fail to detect serotypes at low abundance, whereas microarray serotyping is more costly and technology dependent but may detect these additional minor carried serotypes.


Genome Biology and Evolution | 2011

The Distribution of Mobile Genetic Elements (MGEs) in MRSA CC398 Is Associated with Both Host and Country

Alex J. McCarthy; Adam A. Witney; Katherine A. Gould; Arshnee Moodley; Luca Guardabassi; Andreas Voss; Olivier Denis; Els M. Broens; Jason Hinds; Jodi A. Lindsay

Methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 has emerged from pigs to cause human infections in Europe and North America. We used a new 62-strain S. aureus microarray (SAM-62) to compare genomes of isolates from three geographical areas (Belgium, Denmark, and Netherlands) to understand how CC398 colonizes different mammalian hosts. The core genomes of 44 pig isolates and 32 isolates from humans did not vary. However, mobile genetic element (MGE) distribution was variable including SCCmec. φ3 bacteriophage and human specificity genes (chp, sak, scn) were found in invasive human but not pig isolates. SaPI5 and putative ruminant specificity gene variants (vwb and scn) were common but not pig specific. Virulence and resistance gene carriage was host associated but country specific. We conclude MGE exchange is frequent in CC398 and greatest among populations in close contact. This feature may help determine epidemiological associations among isolates of the same lineage.


Journal of Clinical Microbiology | 2015

Clinical Application of Whole-Genome Sequencing To Inform Treatment for Multidrug-Resistant Tuberculosis Cases

Adam A. Witney; Katherine A. Gould; Amber Arnold; David Coleman; Rachel Delgado; Jasvir Dhillon; Marcus Pond; Cassie F Pope; Tim Planche; Neil G. Stoker; Catherine A. Cosgrove; Philip D. Butcher; Thomas S. Harrison; Jason Hinds

ABSTRACT The treatment of drug-resistant tuberculosis cases is challenging, as drug options are limited, and the existing diagnostics are inadequate. Whole-genome sequencing (WGS) has been used in a clinical setting to investigate six cases of suspected extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) encountered at a London teaching hospital between 2008 and 2014. Sixteen isolates from six suspected XDR-TB cases were sequenced; five cases were analyzed in a clinically relevant time frame, with one case sequenced retrospectively. WGS identified mutations in the M. tuberculosis genes associated with antibiotic resistance that are likely to be responsible for the phenotypic resistance. Thus, an evidence base was developed to inform the clinical decisions made around antibiotic treatment over prolonged periods. All strains in this study belonged to the East Asian (Beijing) lineage, and the strain relatedness was consistent with the expectations from the case histories, confirming one contact transmission event. We demonstrate that WGS data can be produced in a clinically relevant time scale some weeks before drug sensitivity testing (DST) data are available, and they actively help clinical decision-making through the assessment of whether an isolate (i) has a particular resistance mutation where there are absent or contradictory DST results, (ii) has no further resistance markers and therefore is unlikely to be XDR, or (iii) is identical to an isolate of known resistance (i.e., a likely transmission event). A small number of discrepancies between the genotypic predictions and phenotypic DST results are discussed in the wider context of the interpretation and reporting of WGS results.


Antimicrobial Agents and Chemotherapy | 2002

Cleavable-Complex Formation by Wild-Type and Quinolone-Resistant Streptococcus pneumoniae Type II Topoisomerases Mediated by Gemifloxacin and Other Fluoroquinolones

Genoveva Yagüe; Julia E. Morris; Xiao-Su Pan; Katherine A. Gould; L. Mark Fisher

ABSTRACT Gemifloxacin is a recently developed fluoroquinolone with potent activity against Streptococcus pneumoniae. We show that the drug is more active than moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin against S. pneumoniae strain 7785 (MICs, 0.03 to 0.06 μg/ml versus 0.25, 0.25, 1, and 1 to 2 μg/ml, respectively) and against isogenic quinolone-resistant gyrA-parC mutants (MICs, 0.5 to 1 μg/ml versus 2 to 4, 2 to 4, 16 to 32, and 64 μg/ml, respectively). Gemifloxacin was also the most potent agent against purified S. pneumoniae DNA gyrase and topoisomerase IV in both catalytic inhibition and DNA cleavage assays. The drug concentrations that inhibited DNA supercoiling or DNA decatenation by 50% (IC50s) were 5 to 10 and 2.5 to 5.0 μM, respectively. Ciprofloxacin and levofloxacin were some four- to eightfold less active against either enzyme; moxifloxacin and gatifloxacin showed intermediate activities. In assays of drug-mediated DNA cleavage by gyrase and topoisomerase IV, the same order of potency was seen: gemifloxacin > moxifloxacin > gatifloxacin > levofloxacin ≈ ciprofloxacin. For gemifloxacin, the drug concentrations that caused 25% linearization of the input DNA by gyrase and topoisomerase IV were 2.5 and 0.1 to 0.3 μM, respectively; these values were 4-fold and 8- to 25-fold lower than those for moxifloxacin, respectively. Each drug induced DNA cleavage by gyrase at the same spectrum of sites but with different patterns of intensity. Finally, for enzymes reconstituted with quinolone-resistant GyrA S81F or ParC S79F subunits, although cleavable-complex formation was reduced by at least 8- to 16-fold for all the quinolones tested, gemifloxacin was the most effective; e.g., it was 4- to 16-fold more active than the other drugs against toposiomerase IV with the ParC S79F mutation. It appears that the greater potency of gemifloxacin against both wild-type and quinolone-resistant S. pneumoniae strains arises from enhanced stabilization of gyrase and topoisomerase IV complexes on DNA.


Antimicrobial Agents and Chemotherapy | 2010

Influence of Tigecycline on Expression of Virulence Factors in Biofilm-Associated Cells of Methicillin-Resistant Staphylococcus aureus

Karen M. Smith; Katherine A. Gould; Gordon Ramage; Curtis G. Gemmell; Jason Hinds; Sue Lang

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) infections are complicated by the ability of the organism to grow in surface-adhered biofilms on a multitude of abiotic and biological surfaces. These multicellular communities are notoriously difficult to eradicate with antimicrobial therapy. Cells within the biofilm may be exposed to a sublethal concentration of the antimicrobial due to the metabolic and phenotypic diversity of the biofilm-associated cells or the protection offered by the biofilm structure. In the present study, the influence of a sublethal concentration of tigecycline on biofilms formed by an epidemic MRSA-16 isolate was investigated by transcriptome analysis. In the presence of the drug, 309 genes were upregulated and 213 genes were downregulated by more than twofold in comparison to the levels of gene regulation detected for the controls not grown in the presence of the drug. Microarray data were validated by real-time reverse transcription-PCR and phenotypic assays. Tigecycline altered the expression of a number of genes encoding proteins considered to be crucial for the virulence of S. aureus. These included the reduced expression of icaC, which is involved in polysaccharide intercellular adhesin production and biofilm development; the upregulation of fnbA, clfB, and cna, which encode adhesins which attach to human proteins; and the downregulation of the cap genes, which mediate the synthesis of the capsule polysaccharide. The expression of tst, which encodes toxic shock syndrome toxin 1 (TSST-1), was also significantly reduced; and an assay performed to quantify TSST-1 showed that the level of toxin production by cells treated with tigecycline decreased by 10-fold (P < 0.001) compared to the level of production by untreated control cells. This study suggests that tigecycline may reduce the expression of important virulence factors in S. aureus and supports further investigation to determine whether it could be a useful adjunct to therapy for the treatment of biofilm-mediated infections.


Microbiology | 2012

Variation at the capsule locus, cps, of mistyped and non-typable Streptococcus pneumoniae isolates.

Susannah J. Salter; Jason Hinds; Katherine A. Gould; Lotte Lambertsen; William P. Hanage; Martin Antonio; Paul Turner; P. W. M. Hermans; Hester J. Bootsma; Katherine L. O'Brien; Stephen D. Bentley

The capsule polysaccharide locus (cps) is the site of the capsule biosynthesis gene cluster in encapsulated Streptococcus pneumoniae. A set of pneumococcal samples and non-pneumococcal streptococci from Denmark, the Gambia, the Netherlands, Thailand, the UK and the USA were sequenced at the cps locus to elucidate serologically mistyped or non-typable isolates. We identified a novel serotype 33B/33C mosaic capsule cluster and previously unseen serotype 22F capsule genes, disrupted and deleted cps clusters, the presence of aliB and nspA genes that are unrelated to capsule production, and similar genes in the non-pneumococcal samples. These data provide greater understanding of diversity at a locus which is crucial to the antigenic diversity of the pathogen and current vaccine strategies.


Journal of Clinical Microbiology | 2009

Two Distinct Clones of Methicillin-Resistant Staphylococcus aureus (MRSA) with the Same USA300 Pulsed-Field Gel Electrophoresis Profile: a Potential Pitfall for Identification of USA300 Community-Associated MRSA

Anders Rhod Larsen; Richard V. Goering; Marc Stegger; Jodi A. Lindsay; Katherine A. Gould; Jason Hinds; Marit Sørum; Henrik Westh; Kit Boye; Robert Skov

ABSTRACT Analysis of methicillin-resistant Staphylococcus aureus (MRSA) characterized as USA300 by pulsed-field gel electrophoresis identified two distinct clones. One was similar to community-associated USA300 MRSA (ST8-IVa, t008, and Panton-Valentine leukocidin positive). The second (ST8-IVa, t024, and PVL negative) had different molecular characteristics and epidemiology, suggesting independent evolution. We recommend spa typing and/or PCR to discriminate between the two clones.


Genome Biology and Evolution | 2014

Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.

Alex J. McCarthy; Anette Loeffler; Adam A. Witney; Katherine A. Gould; David Lloyd; Jodi A. Lindsay

Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro.


Environmental Microbiology | 2011

Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes.

Philip J. Hepworth; Kevin E. Ashelford; Jason Hinds; Katherine A. Gould; Adam A. Witney; Nicola Williams; Howard Leatherbarrow; N. P. French; Richard J. Birtles; Chriselle Mendonca; Nick Dorrell; Brendan W. Wren; Paul Wigley; Neil Hall; Craig Winstanley

Summary Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization.

Collaboration


Dive into the Katherine A. Gould's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Finn

Bristol Royal Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen D. Bentley

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge