Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine A. Pattridge is active.

Publication


Featured researches published by Katherine A. Pattridge.


Journal of Molecular Biology | 1991

Manganese superoxide dismutase from Thermus thermophilus: A structural model refined at 1.8 Å resolution☆

Martha L. Ludwig; Anita L. Metzger; Katherine A. Pattridge; William C. Stallings

The structure of Mn(III) superoxide dismutase (Mn(III)SOD) from Thermus thermophilus, a tetramer of chains 203 residues in length, has been refined by restrained least-squares methods. The R-factor [formula: see text] for the 54,056 unique reflections measured between 10.0 and 1.8 A (96% of all possible reflections) is 0.176 for a model comprising the protein dimer and 180 bound solvents, the asymmetric unit of the P4(1)2(1)2 cell. The monomer chain forms two domains as determined by distance plots: the N-terminal domain is dominated by two long antiparallel helices (residues 21 to 45 and 69 to 89) and the C-terminal domain (residues 100 to 203) is an alpha + beta structure including a three-stranded sheet. Features that may be important for the folding and function of this MnSOD include: (1) a cis-proline in a turn preceding the first long helix; (2) a residue inserted at position 30 that distorts the helix near the first Mn ligand; and (3) the locations of glycine and proline residues in the domain connector (residues 92 to 99) and in the vicinity of the short cross connection (residues 150 to 159) that links two strands of the beta-sheet. Domain-domain contacts include salt bridges between arginine residues and acidic side chains, an extensive hydrophobic interface, and at least ten hydrogen-bonded interactions. The tetramer possesses 222 symmetry but is held together by only two types of interfaces. The dimer interface at the non-crystallographic dyad is extensive (1000 A2 buried surface/monomer) and incorporates 17 trapped or structural solvents. The dimer interface at the crystallographic dyad buries fewer residues (750 A2/monomer) and resembles a snap fastener in which a type I turn thrusts into a hydrophobic basket formed by a ring of helices in the opposing chain. Each of the metal sites is fully occupied, with the Mn(III) five-co-ordinate in trigonal bipyramidal geometry. One of the axial ligands is solvent; the four protein ligands are His28, His83, Asp166 and His170. Surrounding the metal-ligand cluster is a shell of predominantly hydrophobic residues from both chains of the asymmetric unit (Phe86A, Trp87A, Trp132A, Trp168A, Tyr183A, Tyr172B, Tyr173B), and both chains collaborate in the formation of a solvent-lined channel that terminates at Tyr36 and His32 near the metal ion and is presumed to be the path by which substrate or other inner-sphere ligands reach the metal.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Molecular Biology | 1983

Structure of oxidized flavodoxin from Anacystis nidulans

Ward W. Smith; Katherine A. Pattridge; Martha L. Ludwig; Gregory A. Petsko; Demetrius Tsernoglou; Masaru Tanaka; Kerry T. Yasunobu

The structure of oxidized flavodoxin from the cyanobacterium Anacystis nidulans has been determined at 2.5 A resolution with phases calculated from ethylmercury phosphate and dimercuriacetate derivatives. The determination of partial sequences, including a total of 85 residues, has assisted in the interpretation of the electron density. Preliminary refinement of a partial model (1072 atoms) has reduced R to 0.349 for the 10.997 reflections between 2.0 and 5.0 A with 1 greater than 2 sigma. The polypeptide backbone, which comprises 167 residues in the current model, adopts the familiar beta-alpha-beta conformation found in other flavodoxins and in the nucleotide-binding domains of the pyridine-nucleotide dehydrogenases, with five parallel strands in the central sheet. Comparison with flavodoxin from Clostridium MP (138 residues) shows that extra residues of A. nidulans flavodoxin are accommodated in a major insertion about 20 residues in length, which forms a lobe adjacent to the fifth strand of parallel sheet, and in additions to several external segments. Residues added between the fourth sheet strand and the start of the third helix alter the environment of the pyrimidine end of the flavin mononucleotide ring. The flavin mononucleotide phosphate binds to the start of helix 1, interacting with hydroxyamino acids and with main-chain amide groups. Two hydrophobic residues, both tentatively identified as Trp, enclose the isoalloxazine ring; the solvent-exposed Trp is nearly parallel to the flavin ring. The hydrophobic environment provided by these residues must be partly responsible for the pronounced vibrational resolution of the flavin spectrum near 450 nm. The flavin ring is tilted relative to its orientation in Clostridium MP flavodoxin. In addition, atoms N-3 and O-2 alpha of the isoalloxazine appear to form hydrogen bonds to the backbone at CO97 and NH99 in a conformation entirely different from that found in Clostridium MP flavodoxin but structurally analogous to Desulfovibrio vulgaris flavodoxin.


Nature Structural & Molecular Biology | 2002

Domain alternation switches B12-dependent methionine synthase to the activation conformation

Vahe Bandarian; Katherine A. Pattridge; Brett W. Lennon; Donald P. Huddler; Rowena G. Matthews; Martha L. Ludwig

B12-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that uses bound cobalamin as an intermediate methyl carrier. Major domain rearrangements have been postulated to explain how cobalamin reacts with three different substrates: homocysteine, methyltetrahydrofolate and S-adenosylmethionine (AdoMet). Here we describe the 3.0 Å structure of a 65 kDa C-terminal fragment of MetH that spans the cobalamin- and AdoMet-binding domains, arranged in a conformation suitable for the methyl transfer from AdoMet to cobalamin that occurs during activation. In the conversion to the activation conformation, a helical domain that capped the cofactor moves 26 Å and rotates by 63°, allowing formation of a new interface between cobalamin and the AdoMet-binding (activation) domain. Interactions with the MetH activation domain drive the cobalamin away from its binding domain in a way that requires dissociation of the axial cobalt ligand and, thereby, provide a mechanism for control of the distribution of enzyme conformations.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Insights into the reactivation of cobalamin-dependent methionine synthase

Markos Koutmos; Supratim Datta; Katherine A. Pattridge; Janet L. Smith; Rowena G. Matthews

Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every ≈2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetHCT) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetHCT (s-sMetHCT) that offer further insight into the reactivation of MetH. The structure of s-sMetHCT with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of s-sMetHCT with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.


Journal of Biological Chemistry | 2003

Glycerol-3-phosphate cytidylyltransferase: Structural changes induced by binding of CDP-glycerol and the role of lysine residues in catalysis

Katherine A. Pattridge; Christian Weber; Jon A. Friesen; Subramaniam Sanker; Claudia Kent; Martha L. Ludwig

The bacterial enzyme, glycerol-3-phosphate cytidylyltransferase (GCT), is a model for mammalian cytidylyltransferases and is a member of a large superfamily of nucleotidyltransferases. Dimeric GCT from Bacillus subtilis displays unusual negative cooperativity in substrate binding and appears to form products only when both active sites are occupied by substrates. Here we describe a complex of GCT with the product, CDP-glycerol, in a crystal structure in which bound sulfate serves as a partial mimic of the second product, pyrophosphate. Binding of sulfate to form a pseudo-ternary complex is observed in three of the four chains constituting the asymmetric unit and is accompanied by a backbone rearrangement at Asp11 and ordering of the C-terminal helix. Comparison with the CTP complex of GCT, determined previously, reveals that in the product complex the active site closes around the glycerol phosphate moiety with a concerted motion of the segment 37-47 that includes helix B. This rearrangement allows lysines 44 and 46 to interact with the glycerol and cytosine phosphates of CDP-glycerol. Binding of CDP-glycerol also induces smaller movements of residues 92-100. Roles of lysines 44 and 46 in catalysis have been confirmed by mutagenesis of these residues to alanine, which decreases Vmax(app) and has profound effects on the Km(app) for glycerol-3-phosphate.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor

Supratim Datta; Markos Koutmos; Katherine A. Pattridge; Martha L. Ludwig; Rowena G. Matthews

B12-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that is alternately methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form cob(I)alamin. Major domain rearrangements are required to allow cobalamin to react with three different substrates: homocysteine, methyltetrahydrofolate, and S-adenosyl-l-methionine (AdoMet). These same rearrangements appear to preclude crystallization of the wild-type enzyme. Disulfide cross-linking was used to lock a C-terminal fragment of the enzyme into a unique conformation. Cysteine point mutations were introduced at Ile-690 and Gly-743. These cysteine residues span the cap and the cobalamin-binding module and form a cross-link that reduces the conformational space accessed by the enzyme, facilitating protein crystallization. Here, we describe an x-ray structure of the mutant fragment in the reactivation conformation; this conformation enables the transfer of a methyl group from AdoMet to the cobalamin cofactor. In the structure, the axial ligand to the cobalamin, His-759, dissociates from the cobalamin and forms intermodular contacts with residues in the AdoMet-binding module. This unanticipated intermodular interaction is expected to play a major role in controlling the distribution of conformers required for the catalytic and the reactivation cycles of the enzyme.


Protein Science | 2007

Reactivation of methionine synthase from Thermotoga maritima (TM0268) requires the downstream gene product TM0269

Sha Huang; Gail Romanchuk; Katherine A. Pattridge; Scott A. Lesley; Ian A. Wilson; Rowena G. Matthews; Martha L. Ludwig

The crystal structure of the Thermotoga maritima gene product TM0269, determined as part of genome‐wide structural coverage of T. maritima by the Joint Center for Structural Genomics, revealed structural homology with the fourth module of the cobalamin‐dependent methionine synthase (MetH) from Escherichia coli, despite the lack of significant sequence homology. The gene specifying TM0269 lies in close proximity to another gene, TM0268, which shows sequence homology with the first three modules of E. coli MetH. The fourth module of E. coli MetH is required for reductive remethylation of the cob(II)alamin form of the cofactor and binds the methyl donor for this reactivation, S‐adenosylmethionine (AdoMet). Measurements of the rates of methionine formation in the presence and absence of TM0269 and AdoMet demonstrate that both TM0269 and AdoMet are required for reactivation of the inactive cob(II)alamin form of TM0268. These activity measurements confirm the structure‐based assignment of the function of the TM0269 gene product. In the presence of TM0269, AdoMet, and reductants, the measured activity of T. maritima MetH is maximal near 80°C, where the specific activity of the purified protein is ∼15% of that of E. coli methionine synthase (MetH) at 37°C. Comparisons of the structures and sequences of TM0269 and the reactivation domain of E. coli MetH suggest that AdoMet may be bound somewhat differently by the homologous proteins. However, the conformation of a hairpin that is critical for cobalamin binding in E. coli MetH, which constitutes an essential structural element, is retained in the T. maritima reactivation protein despite striking divergence of the sequences.


Biochemistry | 1995

Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus.

Myoung Soo Lah; Melinda M. Dixon; Katherine A. Pattridge; William C. Stallings; James A. Fee; Martha L. Ludwig


Journal of Biological Chemistry | 1985

The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution.

William C. Stallings; Katherine A. Pattridge; R K Strong; Martha L. Ludwig


Biochemistry | 1997

Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.

Martha L. Ludwig; Katherine A. Pattridge; Anita L. Metzger; Melinda M. Dixon; Mesut Eren; Yucheng Feng; Richard P. Swenson

Collaboration


Dive into the Katherine A. Pattridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Fee

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge