Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine D. Mathews is active.

Publication


Featured researches published by Katherine D. Mathews.


Nature | 2002

Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies

Daniel E. Michele; Rita Barresi; Motoi Kanagawa; Fumiaki Saito; Ronald D. Cohn; Jakob S. Satz; James Dollar; Ichizo Nishino; Richard I. Kelley; Hannu Somerk; Volker Straub; Katherine D. Mathews; Steven A. Moore; Kevin P. Campbell

Muscle–eye–brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD) are congenital muscular dystrophies with associated, similar brain malformations. The FCMD gene, fukutin, shares some homology with fringe-like glycosyltransferases, and the MEB gene, POMGnT1, seems to be a new glycosyltransferase. Here we show, in both MEB and FCMD patients, that α-dystroglycan is expressed at the muscle membrane, but similar hypoglycosylation in the diseases directly abolishes binding activity of dystroglycan for the ligands laminin, neurexin and agrin. We show that this post-translational biochemical and functional disruption of α-dystroglycan is recapitulated in the muscle and central nervous system of mutant myodystrophy (myd) mice. We demonstrate that myd mice have abnormal neuronal migration in cerebral cortex, cerebellum and hippocampus, and show disruption of the basal lamina. In addition, myd mice reveal that dystroglycan targets proteins to functional sites in brain through its interactions with extracellular matrix proteins. These results suggest that at least three distinct mammalian genes function within a convergent post-translational processing pathway during the biosynthesis of dystroglycan, and that abnormal dystroglycan–ligand interactions underlie the pathogenic mechanism of muscular dystrophy with brain abnormalities.


The New England Journal of Medicine | 1991

Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity

Teepu Siddique; Denise A. Figlewicz; Margaret A. Pericak-Vance; Jonathan L. Haines; Guy A. Rouleau; Anita J. Jeffers; Peter Sapp; Wu Yen Hung; J. L. Bebout; Diane McKenna-Yasek; Gang Deng; H. Robert Horvitz; James F. Gusella; Robert H. Brown; Allen D. Roses; Raymond P. Roos; David B. Williams; Donald W. Mulder; Paul C. Watkins; FaizurRahman Noore; Garth A. Nicholson; Rosalyn Reed; Benjamin Rix Brooks; Barry W. Festoff; Jack P. Antel; Rup Tandan; Theodore L. Munsat; Nigel G. Laing; John J. Halperin; Forbes H. Norris

BACKGROUND Amyotrophic lateral sclerosis is a progressive neurologic disorder that commonly results in paralysis and death. Despite more than a century of research, no cause of, cure for, or means of preventing this disorder has been found. In a minority of cases, it is familial and inherited as an autosomal dominant trait with age-dependent penetrance. In contrast to the sporadic form of amyotrophic lateral sclerosis, the familial form provides the opportunity to use molecular genetic techniques to localize an inherited defect. Furthermore, such studies have the potential to discover the basic molecular defect causing motor-neuron degeneration. METHODS AND RESULTS We evaluated 23 families with familial amyotrophic lateral sclerosis for linkage of the gene causing this disease to four DNA markers on the long arm of chromosome 21. Multipoint linkage analyses demonstrated linkage between the gene and these markers. The maximum lod score--5.03--was obtained 10 centimorgans distal (telomeric) to the DNA marker D21S58. There was a significant probability (P less than 0.0001) of genetic-locus heterogeneity in the families. CONCLUSIONS The localization of a gene causing familial amyotrophic lateral sclerosis provides a means of isolating this gene and studying its function. Insight gained from understanding the function of this gene may be applicable to the design of rational therapy for both the familial and sporadic forms of the disease.


Neurology | 2005

Practice Parameter: Corticosteroid treatment of Duchenne dystrophy Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society

Richard T. Moxley; Stephen Ashwal; Shree Pandya; A. Connolly; J. Florence; Katherine D. Mathews; L. Baumbach; Craig M. McDonald; Michael D. Sussman; C. Wade

Background: The Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society develop practice parameters as strategies for patient management based on analysis of evidence. Objective: To review available evidence on corticosteroid treatment of boys with Duchenne dystrophy. Methods: Relevant literature was reviewed, abstracted, and classified. Recommendations were based on a four-tiered scheme of evidence classification, and areas for future research are defined. Results: Seven class I studies and numerous less rigorous trials all demonstrated that corticosteroid treatment for 6 months with prednisone (0.75 or 1.5 mg/kg/day) increased muscle strength, performance, and pulmonary function and significantly slowed the progression of weakness. Two class I trials examined the effect of lower dosage of prednisone (0.30 and 0.35 mg/kg/day), demonstrated lesser but similar benefits, and showed a lower frequency of side effects (e.g., weight gain). The only significant side effects in all class I trials were weight gain and development of a cushingoid facial appearance. One longer-term trial of daily prednisone (0.3 to 0.7 mg/kg/day), a class III study, showed prolongation of functional ability and slower progression of weakness in patients during 3 years of treatment. One class IV, open trial of alternate-day prednisone (2 mg/kg for 2 months, then two-thirds dose every other day) extended ambulation by approximately 2 years in treated compared with untreated patients. Deflazacort, a corticosteroid similar in structure to prednisone, produced similar improvement in muscle strength and function with a similar side effect profile. Conclusions: Prednisone has been demonstrated to have a beneficial effect on muscle strength and function in boys with Duchenne dystrophy and should be offered (at a dose of 0.75 mg/kg/day) as treatment. If side effects require a decrease in prednisone, tapering to dosages as low as 0.3 mg/kg/day gives less robust but significant improvement. Deflazacort (0.9 mg/kg/day) can also be used for the treatment of Duchenne dystrophy in countries in which it is available. Benefits and side effects of corticosteroid therapy need to be monitored. The offer of treatment with corticosteroids should include a balanced discussion of potential risks.


Neurology | 2004

Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria.

M. K. Bruno; Mark Hallett; Katrina Gwinn-Hardy; B. Sorensen; Elaine Considine; S. Tucker; David R. Lynch; Katherine D. Mathews; Kathryn J. Swoboda; Juliette Harris; Bing-Wen Soong; Tetsuo Ashizawa; Joseph Jankovic; D. Renner; Ying-Hui Fu; Louis J. Ptáček

Background: Paroxysmal kinesigenic dyskinesia (PKD) is a rare disorder characterized by short episodes of involuntary movement attacks triggered by sudden voluntary movements. Although a genetic basis is suspected in idiopathic cases, the gene has not been discovered. Establishing strict diagnostic criteria will help genetic studies. Methods: The authors reviewed the clinical features of 121 affected individuals, who were referred for genetic study with a presumptive diagnosis of idiopathic PKD. Results: The majority (79%) of affected subjects had a distinctive homogeneous phenotype. The authors propose the following diagnostic criteria for idiopathic PKD based on this phenotype: identified trigger for the attacks (sudden movements), short duration of attacks (<1 minute), lack of loss of consciousness or pain during attacks, antiepileptic drug responsiveness, exclusion of other organic diseases, and age at onset between 1 and 20 years if there is no family history (age at onset may be applied less stringently in those with family history). In comparing familial and sporadic cases, sporadic cases were more frequently male, and infantile convulsions were more common in the familial kindreds. Females had a higher remission rate than males. An infantile-onset group with a different set of characteristics was identified. A clear kinesigenic trigger was not elicited in all cases, antiepileptic response was not universal, and some infants had attacks while asleep. Conclusions: The diagnosis of idiopathic paroxysmal kinesigenic dyskinesia (PKD) can be made based on historical features. The correct diagnosis has implications for treatment and prognosis, and the diagnostic scheme may allow better focus in the search for the PKD gene(s).


Nature Genetics | 2012

ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome

Tobias Willer; Hane Lee; Mark Lommel; Takako Yoshida-Moriguchi; Daniel Beltrán-Valero de Bernabé; David Venzke; Sebahattin Cirak; Harry Schachter; Jiri Vajsar; Thomas Voit; Francesco Muntoni; Andrea S Loder; William B. Dobyns; Thomas L. Winder; Sabine Strahl; Katherine D. Mathews; Stanley F. Nelson; Steven A. Moore; Kevin P. Campbell

Walker-Warburg syndrome (WWS) is clinically defined as congenital muscular dystrophy that is accompanied by a variety of brain and eye malformations. It represents the most severe clinical phenotype in a spectrum of diseases associated with abnormal post-translational processing of α-dystroglycan that share a defect in laminin-binding glycan synthesis. Although mutations in six genes have been identified as causes of WWS, only half of all individuals with the disease can currently be diagnosed on this basis. A cell fusion complementation assay in fibroblasts from undiagnosed individuals with WWS was used to identify five new complementation groups. Further evaluation of one group by linkage analysis and targeted sequencing identified recessive mutations in the ISPD gene (encoding isoprenoid synthase domain containing). The pathogenicity of the identified ISPD mutations was shown by complementation of fibroblasts with wild-type ISPD. Finally, we show that recessive mutations in ISPD abolish the initial step in laminin-binding glycan synthesis by disrupting dystroglycan O-mannosylation. This establishes a new mechanism for WWS pathophysiology.


Human Mutation | 2009

Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort

Kevin M. Flanigan; Diane M. Dunn; Andrew von Niederhausern; Payam Soltanzadeh; Eduard Gappmaier; Michael T. Howard; Jacinda Sampson; Cheryl Wall; Wendy M. King; Alan Pestronk; Julaine Florence; Anne M. Connolly; Katherine D. Mathews; Carrie M. Stephan; Karla S. Laubenthal; Brenda Wong; P. Morehart; Amy Meyer; Richard S. Finkel; Carsten G. Bönnemann; Livija Medne; John W. Day; Joline Dalton; Marcia Margolis; Veronica J. Hinton; Robert B. Weiss

Mutations in the DMD gene, encoding the dystrophin protein, are responsible for the dystrophinopathies Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), and X‐linked Dilated Cardiomyopathy (XLDC). Mutation analysis has traditionally been challenging, due to the large gene size (79 exons over 2.2 Mb of genomic DNA). We report a very large aggregate data set comprised of DMD mutations detected in samples from patients enrolled in the United Dystrophinopathy Project, a multicenter research consortium, and in referral samples submitted for mutation analysis with a diagnosis of dystrophinopathy. We report 1,111 mutations in the DMD gene, including 891 mutations with associated phenotypes. These results encompass 506 point mutations (including 294 nonsense mutations) and significantly expand the number of mutations associated with the dystrophinopathies, highlighting the utility of modern diagnostic techniques. Our data supports the uniform hypermutability of CGA>TGA mutations, establishes the frequency of polymorphic muscle (Dp427m) protein isoforms and reveals unique genomic haplotypes associated with “private” mutations. We note that 60% of these patients would be predicted to benefit from skipping of a single DMD exon using antisense oligonucleotide therapy, and 62% would be predicted to benefit from an inclusive multiexonskipping approach directed toward exons 45 through 55. Hum Mutat 30:1657–1666, 2009.


Nature Genetics | 2002

Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome

Karen M. Lower; Gillian Turner; Bronwyn Kerr; Katherine D. Mathews; Marie A. Shaw; Agi K. Gedeon; Susan Schelley; H. Eugene Hoyme; Susan M. White; Martin B. Delatycki; Anne K. Lampe; Jill Clayton-Smith; Helen Stewart; Conny van Ravenswaay; Bert B.A. de Vries; Barbara Cox; Markus Grompe; Shelley Ross; Paul Q. Thomas; John C. Mulley; Jozef Gecz

Börjeson–Forssman–Lehmann syndrome (BFLS; OMIM 301900) is characterized by moderate to severe mental retardation, epilepsy, hypogonadism, hypometabolism, obesity with marked gynecomastia, swelling of subcutaneous tissue of the face, narrow palpebral fissure and large but not deformed ears. Previously, the gene associated with BFLS was localized to 17 Mb in Xq26–q27 (refs 2–4). We have reduced this interval to roughly 9 Mb containing more than 62 genes. Among these, a novel, widely expressed zinc-finger (plant homeodomain (PHD)-like finger) gene (PHF6) had eight different missense and truncation mutations in seven familial and two sporadic cases of BFLS. Transient transfection studies with PHF6 tagged with green fluorescent protein (GFP) showed diffuse nuclear staining with prominent nucleolar accumulation. Such localization, and the presence of two PHD-like zinc fingers, is suggestive of a role for PHF6 in transcription.


Neuromuscular Disorders | 2014

Diagnostic approach to the congenital muscular dystrophies

Carsten G. Bönnemann; Ching C.H. Wang; Susana Quijano-Roy; Nicolas Deconinck; Enrico Bertini; Ana Ferreiro; Francesco Muntoni; C. Sewry; Christophe Béroud; Katherine D. Mathews; Steven A. Moore; Jonathan Bellini; Anne Rutkowski; Kathryn N. North

Congenital muscular dystrophies (CMDs) are early onset disorders of muscle with histological features suggesting a dystrophic process. The congenital muscular dystrophies as a group encompass great clinical and genetic heterogeneity so that achieving an accurate genetic diagnosis has become increasingly challenging, even in the age of next generation sequencing. In this document we review the diagnostic features, differential diagnostic considerations and available diagnostic tools for the various CMD subtypes and provide a systematic guide to the use of these resources for achieving an accurate molecular diagnosis. An International Committee on the Standard of Care for Congenital Muscular Dystrophies composed of experts on various aspects relevant to the CMDs performed a review of the available literature as well as of the unpublished expertise represented by the members of the committee and their contacts. This process was refined by two rounds of online surveys and followed by a three-day meeting at which the conclusions were presented and further refined. The combined consensus summarized in this document allows the physician to recognize the presence of a CMD in a child with weakness based on history, clinical examination, muscle biopsy results, and imaging. It will be helpful in suspecting a specific CMD subtype in order to prioritize testing to arrive at a final genetic diagnosis.


The Journal of Pediatrics | 2009

Delayed Diagnosis in Duchenne Muscular Dystrophy: Data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet)

Emma Ciafaloni; Deborah J. Fox; Shree Pandya; Christina Westfield; Soman Puzhankara; Paul A. Romitti; Katherine D. Mathews; Timothy M. Miller; Dennis J. Matthews; Lisa Miller; Christopher Cunniff; Charlotte M. Druschel; Richard T. Moxley

OBJECTIVE To identify key factors for the delay in diagnosis of Duchenne muscular dystrophy (DMD) without known family history. STUDY DESIGN The cohort comes from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet), a multistate, multiple-source, population-based surveillance system that identifies and gathers information on all cases of Duchenne and Becker muscular dystrophy born since 1982. We analyzed medical records of 453 Duchenne and Becker muscular dystrophy boys to document the time course and steps taken to reach a definitive diagnosis. RESULTS Among 156 boys without known family history of DMD prior to birth, first signs or symptoms were noted at a mean age of 2.5 years. Concerns resulted in primary care provider evaluation of the child at a mean age of 3.6 years. Mean age at time of initial creatine kinase was 4.7 years. Mean age at definitive diagnosis of DMD was 4.9 years. CONCLUSIONS There is a delay of about 2.5 years between onset of DMD symptoms and the time of definitive diagnosis, unchanged over the previous 2 decades. This delay results in lost opportunities for timely genetic counseling and initiation of corticosteroid treatment. We recommend checking creatine kinase early in the evaluation of boys with unexplained developmental delay.


Journal of the Neurological Sciences | 2011

Mortality in Friedreich ataxia.

Amy Y. Tsou; Erin K. Paulsen; Sarah J. Lagedrost; Susan Perlman; Katherine D. Mathews; George Wilmot; Bernard Ravina; Arnulf H. Koeppen; David R. Lynch

BACKGROUND Although cardiac dysfunction is widely accepted as the most common cause of mortality in Friedreich ataxia (FRDA), no studies have evaluated this since the advent of specific clinical and genetic diagnostic criteria. METHODS We performed a retrospective study of FRDA patients to determine cause of death followed by a case-control analysis comparing characteristics of deceased patients with living, age- and sex-matched FRDA controls. RESULTS Causes of death were cardiac dysfunction (59%), probable cardiac dysfunction (3.3%), non-cardiac (27.9%) or unknown (9.8%). Compared to non-cardiac deaths, cardiac deaths occurred earlier in the disease course (median 29 vs. 17years respectively). Congestive heart failure and arrhythmia were common causes of cardiac-related death. Compared to living, matched FRDA controls, deceased patients had longer triplet repeat lengths and higher rates of arrhythmia and dilated cardiomyopathy. The presence of hypertrophic cardiomyopathy did not differ between deceased and living patients. CONCLUSION Cardiac dysfunction was the most frequent cause of death (59%), most commonly from congestive heart failure or arrhythmia. Arrhythmia and dilated cardiomyopathy were significantly more common in deceased patients compared to matched FRDA controls, while in contrast, the presence of cardiac hypertrophy did not differ. More research is needed to establish the clinical significance of hypertrophy in FRDA.

Collaboration


Dive into the Katherine D. Mathews's collaboration.

Top Co-Authors

Avatar

Steven A. Moore

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shree Pandya

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Lynch

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Perlman

University of California

View shared research outputs
Top Co-Authors

Avatar

Deborah J. Fox

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge