Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine H. Freeman is active.

Publication


Featured researches published by Katherine H. Freeman.


Organic Geochemistry | 1990

Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes

J. M. Hayes; Katherine H. Freeman; Brian N. Popp; Christopher H. Hoham

Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.


Global Biogeochemical Cycles | 1992

Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels.

Katherine H. Freeman; J. M. Hayes

Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.


Paleoceanography | 1999

Miocene evolution of atmospheric carbon dioxide

Mark Pagani; Michael A. Arthur; Katherine H. Freeman

Changes in pCO2 or ocean circulation are generally invoked to explain warm early Miocene climates and a rapid East Antarctic ice sheet (EAIS) expansion in the middle Miocene. This study reconstructs late Oligocene to late Miocene pCO2 from ep values based on carbon isotopic analyses of diunsaturated alkenones and planktonic foraminifera from Deep Sea Drilling Project sites 588 and 608 and Ocean Drilling Program site 730. Our results indicate that highest pCO2 occurred during the latest Oligocene (∼350 ppmv) but decreased rapidly at ∼25 Ma. The early and middle Miocene was characterized by low pCO2 (260–190 ppmv). Lower intervals of pCO2 correspond to inferred organic carbon burial events and glacial episodes with the lowest concentrations occurring during the middle Miocene. There is no evidence for either high pCO2 during the late early Miocene climatic optimum or a sharp pCO2 decrease associated with EAIS growth. Paradoxically, pCO2 increased following EAIS growth and obtained preindustrial levels by ∼10 Ma. Although we emphasize an oceanographic control on Miocene climate, low pCO2 could have primed the climate system to respond sensitively to changes in heat and vapor transport.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Global patterns in leaf 13C discrimination and implications for studies of past and future climate.

Aaron F. Diefendorf; Kevin E. Mueller; Scott L. Wing; Paul L. Koch; Katherine H. Freeman

Fractionation of carbon isotopes by plants during CO2 uptake and fixation (Δleaf) varies with environmental conditions, but quantitative patterns of Δleaf across environmental gradients at the global scale are lacking. This impedes interpretation of variability in ancient terrestrial organic matter, which encodes climatic and ecological signals. To address this problem, we converted 3,310 published leaf δ13C values into mean Δleaf values for 334 woody plant species at 105 locations (yielding 570 species-site combinations) representing a wide range of environmental conditions. Our analyses reveal a strong positive correlation between Δleaf and mean annual precipitation (MAP; R2 = 0.55), mirroring global trends in gross primary production and indicating stomatal constraints on leaf gas-exchange, mediated by water supply, are the dominant control of Δleaf at large spatial scales. Independent of MAP, we show a lesser, negative effect of altitude on Δleaf and minor effects of temperature and latitude. After accounting for these factors, mean Δleaf of evergreen gymnosperms is lower (by 1–2.7‰) than for other woody plant functional types (PFT), likely due to greater leaf-level water-use efficiency. Together, environmental and PFT effects contribute to differences in mean Δleaf of up to 6‰ between biomes. Coupling geologic indicators of ancient precipitation and PFT (or biome) with modern Δleaf patterns has potential to yield more robust reconstructions of atmospheric δ13C values, leading to better constraints on past greenhouse-gas perturbations. Accordingly, we estimate a 4.6‰ decline in the δ13C of atmospheric CO2 at the onset of the Paleocene-Eocene Thermal Maximum, an abrupt global warming event ∼55.8 Ma.


Global Biogeochemical Cycles | 1997

Consistent fractionation of 13C in nature and in the laboratory: Growth‐rate effects in some haptophyte algae

Robert R. Bidigare; Arnim Fluegge; Katherine H. Freeman; Kristi L. Hanson; J. M. Hayes; David J. Hollander; John P. Jasper; Linda L. King; Edward A. Laws; Jeffrey Milder; Frank J. Millero; Richard D. Pancost; Brian N. Popp; Paul A. Steinberg; Stuart G. Wakeham

The carbon isotopic fractionation accompanying formation of biomass by alkenone-producing algae in natural marine environments varies systematically with the concentration of dissolved phosphate. Specifically, if the fractionation is expressed by epsilon p approximately delta e - delta p, where delta e and delta p are the delta 13C values for dissolved CO2 and for algal biomass (determined by isotopic analysis of C37 alkadienones), respectively, and if Ce is the concentration of dissolved CO2, micromole kg-1, then b = 38 + 160*[PO4], where [PO4] is the concentration of dissolved phosphate, microM, and b = (25 - epsilon p)Ce. The correlation found between b and [PO4] is due to effects linking nutrient levels to growth rates and cellular carbon budgets for alkenone-containing algae, most likely by trace-metal limitations on algal growth. The relationship reported here is characteristic of 39 samples (r2 = 0.95) from the Santa Monica Basin (six different times during the annual cycle), the equatorial Pacific (boreal spring and fall cruises as well as during an iron-enrichment experiment), and the Peru upwelling zone. Points representative of samples from the Sargasso Sea ([PO4] < or = 0.1 microM) fall above the b = f[PO4] line. Analysis of correlations expected between mu (growth rate), epsilon p, and Ce shows that, for our entire data set, most variations in epsilon p result from variations in mu rather than Ce. Accordingly, before concentrations of dissolved CO2 can be estimated from isotopic fractionations, some means of accounting for variations in growth rate must be found, perhaps by drawing on relationships between [PO4] and Cd/Ca ratios in shells of planktonic foraminifera.


Earth and Planetary Science Letters | 2003

New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia

Shuhei Ono; Jennifer L. Eigenbrode; Alexander Anatolevich Pavlov; Pushker Kharecha; Douglas Rumble; James F. Kasting; Katherine H. Freeman

We have measured multiple sulfur isotope ratios ( 34 S/ 33 S/ 32 S) for sulfide sulfur in shale and carbonate lithofacies from the Hamersley Basin, Western Australia. The v 33 S values (v 33 SWN 33 S30.515UN 34 S) shift from 31.9 to +6.9x over a 22-m core section of the lower Mount McRae Shale (V2.5 Ga). Likewise, sulfide sulfur analyses of the Jeerinah Formation (V2.7 Ga) yield v 33 S values of 30.1 to +8.1x over a 50-m section of core. Despite wide variations in v 33 S and N 34 S, these two shale units yield a similar positive correlation between v 33 S and N 34 S. In contrast, pyrite sulfur analyses of the Carawine Dolomite (V2.6 Ga) yield a broad range in N 34 S (+3.2 to +16.2x) but a relatively small variation and negative values in v 33 S( 32.5 to 31.1x). The stratigraphic distribution of N 33 S, N 34 S, and v 33 S in Western Australia allows us to speculate on the sulfur isotopic composition of Archean sulfur reservoirs and to trace pathways in the Archean sulfur cycle. Our data are explained by a combination of massindependent fractionation (MIF) in the atmosphere and biological mass-dependent fractionation in the ocean. In the Archean, volcanic, sulfur-bearing gas species were photolysed by solar ultraviolet (UV) radiation in an oxygen-free atmosphere, resulting in MIF of sulfur isotopes. Aerosols of S8 (with v 33 Ss 0) and sulfuric acid (with v 33 S6 0) formed from the products of UV photolysis and carried mass-independently fractionated sulfur into the hydrosphere. The signatures of atmospheric photolysis were preserved by precipitation of pyrite in sediments. Pyrite precipitation was mediated by microbial enzymatic catalysis that superimposed mass-dependent fractionation on mass-independent atmospheric effects. Multiple sulfur isotope analyses provide new insights into the early evolution of the atmosphere and the evolution and distribution of early sulfur-metabolizing organisms. A 2003 Elsevier Science B.V. All rights reserved.


Chemical Geology | 2001

Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala — Holy Cross Mountains/Poland)

Michael M. Joachimski; Christian Ostertag-Henning; Richard D. Pancost; Harald Strauss; Katherine H. Freeman; Ralf Littke; Jaap S. Sinninghe Damsté; Grzegorz Racki

The investigation of the trace element and organic geochemistry of the Frasnian–Famennian boundary section at Kowala (Holy Cross Mountains/Poland) shows that the lower water column was oxygen-deficient during late Frasnian and early Famennian times. The abundance and carbon isotopic composition of diaryl isoprenoids, biomarkers indicative for green sulfur bacteria, prove that euxinic waters reached into the photic zone, at least episodically. Total organic carbon (TOC) contents show two maxima that are time-equivalent to the Kellwasser horizons deposited in shallower water settings. Enhanced TOC concentrations are explained by a higher primary productivity, presumably as a consequence of an enhanced nutrient supply from the continent. The increase in the abundance of hopanes and bituminite suggests that the bacterial contribution to TOC increased at the Frasnian–Famennian transition. The sulfur isotopic composition of pyritic- and organically bound sulfur shows a +27‰ excursion across the boundary. The observation that the δ34S values of organic-bound sulfur closely resemble that of pyrite sulfur indicates a common sulfur source, likely early diagenetic sulfide. A change in the δ13C of total dissolved inorganic carbon as a consequence of an enhanced burial of 12C-enriched organic carbon is indicated by a +3‰ excursion measured for TOC as well as for individual n-alkanes and isoprenoids. The burial of large amounts of organic carbon is expected to result in a decrease in pCO2 and should affect the photosynthetic carbon isotope fractionation (ep). The fact that we observe no change in ep can be explained by the circumstance that ep was most probably at maximum values, as a consequence of high atmospheric and oceanic-dissolved CO2 concentrations during the Devonian.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Late Archean rise of aerobic microbial ecosystems

Jennifer L. Eigenbrode; Katherine H. Freeman

We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago.


Geochimica et Cosmochimica Acta | 2001

Molecular and isotopic records of C4 grassland expansion in the late miocene

Katherine H. Freeman; L.A. Colarusso

Abstract Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition ofn-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low δ13C values (ca. −30‰) to higher values (ca. −22‰) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weightn-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, then-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol’s parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.


Applied and Environmental Microbiology | 2004

Nonmarine Crenarchaeol in Nevada Hot Springs

Ann Pearson; Z. Huang; Anitra E. Ingalls; Christopher S. Romanek; Juergen Wiegel; Katherine H. Freeman; R. H. Smittenberg; Chuanlun L. Zhang

ABSTRACT Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids of the Crenarchaeota. The structurally unusual GDGT crenarchaeol has been proposed as a taxonomically specific biomarker for the marine planktonic group I archaea. It is found ubiquitously in the marine water column and in sediments. In this work, samples of microbial community biomass were obtained from several alkaline and neutral-pH hot springs in Nevada, United States. Lipid extracts of these samples were analyzed by high-performance liquid chromatography-mass spectrometry and by gas chromatography-mass spectrometry. Each sample contained GDGTs, and among these compounds was crenarchaeol. The distribution of archaeal lipids in Nevada hot springs did not appear to correlate with temperature, as has been observed in the marine environment. Instead, a significant correlation with the concentration of bicarbonate was observed. Archaeal DNA was analyzed by denaturing gradient gel electrophoresis. All samples contained 16S rRNA gene sequences which were more strongly related to thermophilic crenarchaeota than to Cenarchaeum symbiosum, a marine nonthermophilic crenarchaeon. The occurrence of crenarchaeol in environments containing sequences affiliated with thermophilic crenarchaeota suggests a wide phenotypic distribution of this compound. The results also indicate that crenarchaeol can no longer be considered an exclusive biomarker for marine species.

Collaboration


Dive into the Katherine H. Freeman's collaboration.

Top Co-Authors

Avatar

Michael A. Arthur

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Stuart G. Wakeham

Skidaway Institute of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. M. Hayes

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Kevin E. Mueller

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar

Roger E. Summons

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Macalady

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge